32 research outputs found

    Analysis of eight genes modulating interferon gamma and human genetic susceptibility to tuberculosis: a case-control association study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Interferon gamma is a major macrophage-activating cytokine during infection with <it>Mycobacterium tuberculosis</it>, the causative pathogen of tuberculosis, and its role has been well established in animal models and in humans. This cytokine is produced by activated T helper 1 cells, which can best deal with intracellular pathogens such as <it>M. tuberculosis</it>. Based on the hypothesis that genes which regulate interferon gamma may influence tuberculosis susceptibility, we investigated polymorphisms in eight candidate genes.</p> <p>Methods</p> <p>Fifty-four polymorphisms in eight candidate genes were genotyped in over 800 tuberculosis cases and healthy controls in a population-based case-control association study in a South African population. Genotyping methods used included the SNPlex Genotyping System™, capillary electrophoresis of fluorescently labelled PCR products, TaqMan<sup>® </sup>SNP genotyping assays or the amplification mutation refraction system. Single polymorphisms as well as haplotypes of the variants were tested for association with TB using statistical analyses.</p> <p>Results</p> <p>A haplotype in interleukin 12B was nominally associated with tuberculosis (p = 0.02), but after permutation testing, done to assess the significance for the entire analysis, this was not globally significant. In addition a novel allele was found for the interleukin 12B D5S2941 microsatellite.</p> <p>Conclusions</p> <p>This study highlights the importance of using larger sample sizes when attempting validation of previously reported genetic associations. Initial studies may be false positives or may propose a stronger genetic effect than subsequently found to be the case.</p

    Genome Degradation in Brucella ovis Corresponds with Narrowing of Its Host Range and Tissue Tropism

    Get PDF
    Brucella ovis is a veterinary pathogen associated with epididymitis in sheep. Despite its genetic similarity to the zoonotic pathogens B. abortus, B. melitensis and B. suis, B. ovis does not cause zoonotic disease. Genomic analysis of the type strain ATCC25840 revealed a high percentage of pseudogenes and increased numbers of transposable elements compared to the zoonotic Brucella species, suggesting that genome degradation has occurred concomitant with narrowing of the host range of B. ovis. The absence of genomic island 2, encoding functions required for lipopolysaccharide biosynthesis, as well as inactivation of genes encoding urease, nutrient uptake and utilization, and outer membrane proteins may be factors contributing to the avirulence of B. ovis for humans. A 26.5 kb region of B. ovis ATCC25840 Chromosome II was absent from all the sequenced human pathogenic Brucella genomes, but was present in all of 17 B. ovis isolates tested and in three B. ceti isolates, suggesting that this DNA region may be of use for differentiating B. ovis from other Brucella spp. This is the first genomic analysis of a non-zoonotic Brucella species. The results suggest that inactivation of genes involved in nutrient acquisition and utilization, cell envelope structure and urease may have played a role in narrowing of the tissue tropism and host range of B. ovis

    Structure and permeability of the egg capsule of the placental Australian sharpnose shark, Rhizoprionodon taylori

    No full text
    Shark placentae are derived from modifications to the fetal yolk sac and the maternal uterine mucosa. In almost all placental sharks, embryonic development occurs in an egg capsule that remains intact for the entire pregnancy, separating the fetal tissues from the maternal tissues at the placental interface. Here, we investigate the structure and permeability of the egg capsules that surround developing embryos of the placental Australian sharpnose shark (Rhizoprionodon taylori) during late pregnancy. The egg capsule is an acellular fibrous structure that is 0.42 ± 0.04 μm thick at the placental interface between the yolk sac and uterine tissues, and 0.67 ± 0.08 μm thick in the paraplacental regions. This is the thinnest egg capsule of any placental shark measured so far, which may increase the diffusion rate of respiratory gases, fetal wastes, water and nutrients between maternal and fetal tissues. Molecules smaller than or equal to ~ 1000 Da can diffuse through the egg capsule, but larger proteins (~ 3000–26,000 Da) cannot. Similar permeability characteristics between the egg capsule of R. taylori and other placental sharks suggest that molecular size is an important determinant of the molecules that can be exchanged between the mother and her embryos during pregnancy

    Cork-oak woodlands as key-habitats for biodiversity conservation in Mediterranean landscapes: a case study using rove and ground beetles (Coleoptera: Staphylinidae, Carabidae)

    Get PDF
    http://www.springerlink.com/content/552436w37r088v36/Land-use intensification in Mediterranean agro-forest systems became a pressure on biodiversity, concerning particularly the woodland sensitive species. In 2001, the effects of a land-use gradient from old-growth cork-oak forest to a homogeneous agricultural area were assessed using rove beetles as indicators in a Mediterranean landscape. The aim was to find which species were negatively affected by land-use intensification at the landscape level and whether they benefited from cork-oak patches occurring along the land-use gradient. A total of 3,196 rove beetles from 88 taxa were sampled from all landscape types. Agricultural area recorded significantly higher numbers of abundance and species richness in relation to the cork-oak mosaics, i.e. the old-growth forest and the managed agro-forest landscapes (montados). Moreover, 70% of rove beetle indicator species common enough to be tested by IndVal displayed their highest indicator value for agriculture, showing a lower number of woodland indicators in comparison to ground beetles. Nevertheless, one rove beetle taxon was considered a specialist of closed woodland mosaics while no specialist ground beetle was found for that landscape typology. Some rare rove beetle species were also important in typifying diversity patterns of oldgrowth cork-oak forests. Hence, future management in Mediterranean landscapes should take into account not only indicator species common enough to be tested by IndVal, but also rare and endemic species. Considering the added value of cork-oak woodland cover for sensitive rove and ground beetle diversity, the strengthening of cork-oak woodland connectivity seems to be a crucial management that is required in agricultural Mediterranean landscapes.BIOASSESS project (Contract No. EVK4—1999-00280); Portuguese Foundation for Science and Technology (SFRH/BD/37976/2007)
    corecore