978 research outputs found
Alluvial to lacustrine sedimentation in an endorheic basin during the Mio-Pliocene: The Toro Negro Formation, Central Andes of Argentina
A 2400 m-thick sedimentary column belonging to the Toro Negro Formation was recorded along the Quebrada del Yeso, Sierra de Los Colorados (Vinchina Basin), La Rioja province, NW Argentina. The Vinchina basin is a good example of a closed basin surrounded by the Precordillera fold and thrust belt to the west and basement-cored blocks to the north, south (Western Sierras Pampeanas) and east (Sierra de Famatina). Seven facies associations (FA) are described and interpreted to represent fluvial, lacustrine and alluvial environments developed in the southern part of the Vinchina basin from the Late Miocene until the earliest Pleistocene. The depositional evolution of the formation was divided in four phases. Phase I (∼7–6.6 Ma) represents sedimentation in medial (FA I) to distal (FA II) parts of a southward directed distributive fluvial system with a retrogradational pattern. During phase II (6.6–6.1Ma), the distributive fluvial system was replaced by a mixed clastic-evaporitic shallow lake (FA III) in a high aggradational basin. In phase III (∼6.1–5 Ma) the eastward progradation of a fluvial system (FA IV) was recorded as a distal clastic wedge. Finally, phase IV (∼5-2.4Ma) records two depositional cycles of proximal clastic wedge progradation of fluvial-dominated piedmonts (FAV, FAVII) from the southwest (Sierra de Umango) and/or the west (Precordillera) with an intervening playa lake (FA VI). Two new U-Pb ages obtained from zircons in volcanic ash layers confirm the Late Miocene age of the lower member of the Toro Negro Formation and permit a tight correlation with the central part of the basin (Quebrada de La Troya section). The sedimentation rate calculated for the dated lacustrine-fluvial interval is higher than the corresponding one in La Troya area suggesting a higher subsidence in the southern part of the basin. During the Late Miocene (∼7-6.6Ma) the ephemeral drainage was controlled by an arid to semiarid climate and initially dissipated mostly internally as terminal fan/distributive fluvial systems descending from the north. A thick lacustrine interval developed in the southern part of the basin between ∼6.6 and 6.1 Ma during a period of high subsidence and closed drainage. Besides, this interval coincides with increased aridity recorded in other basins in the Northwest of Argentina. By ∼6.1 Ma the area started to receive the first coarse-grained sediments heralding the progradation of a clastic wedge from the southwest-west (Sierra de Umango and Precordillera) which fully developed during the rest of the Pliocene to the earliest Pleistocene (∼5–2.4 Ma). The 6.1–2.4 Ma interval records ameliorating climate conditions.Fil: Ciccioli, Patricia Lucia. Consejo Nacional de Investigaciones CientÃficas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires; ArgentinaFil: Marenssi, Sergio Alfredo. Consejo Nacional de Investigaciones CientÃficas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires; ArgentinaFil: Amidon, William H.. Middlebury College; Estados UnidosFil: Limarino, Carlos Oscar. Consejo Nacional de Investigaciones CientÃficas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires; ArgentinaFil: Kylander Clark, Andrew. University of California; Estados Unido
Fuel Consumption of a Carburetor Engine at Various Speeds and Torques
An investigation was conducted to obtain fuel-consumption curves for a single-cylinder engine with a Wright 1820-G and Pratt & Whitney 1340-H cylinder at varying speeds, manifold pressures, and air-fuel ratios. The 1340- H cylinder was tested at speeds from 1,200 to 2,400 r.p.m. and at manifold pressures from 21 to 38 inches of mercury absolute. Less than extensive tests were made of the 1820-G cylinder. The results of the tests showed that the minimum brake fuel consumption was obtained when the engines were operating at high torques and at speeds from 60 to 70 percent of the rated speed. The fuel consumption increased at an increasing rate as the torque was reduced; and, at 45 percent of maximum torque, the fuel consumption was 20 percent higher than at maximum torque when the engines were operating at 70 percent of rated speed. Minimum specific fuel consumption was obtained at the same air-fuel ratio regardless of compression ratio. No improvement in fuel consumption was obtained when mixtures leaner than an air-fuel ratio of 15.5 were used. The leanest mixture ratio on which the engine with the 1340-H cylinder would operate smoothly was 18.5 and the spark advance for maximum power with this mixture ratio was 50 degrees B.T.C. A method is discussed for reducing the amount of testing necessary to obtain curves for minimum brake fuel consumption
Comparative Performance of Engines Using a Carburetor, Manifold Injection, and Cylinder Injection
The comparative performance was determined of engines using three methods of mixing the fuel and the air: the use of a carburetor, manifold injection, and cylinder injection. The tests were made of a single-cylinder engine with a Wright 1820-G air-cooled cylinder. Each method of mixing the fuel and the air was investigated over a range of fuel-air ratios from 0.10 to the limit of stable operation and at engine speeds of 1,500 and 1,900 r.p.m. The comparative performance with a fuel-air ratio of 0.08 was investigated for speeds from 1,300 to 1,900 r.p.m. The results show that the power obtained with each method closely followed the volumetric efficiency; the power was therefore the highest with cylinder injection because this method had less manifold restriction. The values of minimum specific fuel consumption obtained with each method of mixing of fuel and air were the same. For the same engine and cooling conditions, the cylinder temperatures are the same regardless of the method used for mixing the fuel and the air
The Recent Carbonate Sediments of Palmyra Atoll, Northern Line Islands, Central Pacific Ocean
Palmyra Atoll is an isolated carbonate reef system located approximately 1600 km south of Hawaii in the northern Line Islands, central Pacific Ocean. Sediment samples from the lagoons and tidal zones were analyzed for grainsize and composition, and the results used to compile detailed maps and interpret the environments and lithofacies present. A distinct grainsize distribution was observed forming concentric bands ranging from coarse gravel rubble on the outer reef through to finer material in the interior of the atoll in the deep lagoons, where peloidal muds prevail. Five lithologic facies have been identified and typical sediments are poorly sorted and near-symmetrical in their grainsize distribution. On average, sediments are medium sand. A distinct chlorozoan assemblage was observed with coral and calcareous red algal fragments forming half of the sediment, with varying amounts of molluscs, Halimeda and foraminifera being the lesser major constituents. Lagoonal and tidal sediments showed little variation in composition between locations and lacked clear compositional zonation, characteristic of other larger atolls of the Pacific.
Palmyra Atoll is unique in that it has had little human intervention for the last sixty years and as a result uninhibited natural processes are occurring. It is also unique in that it displays relatively deep for its size (<55 m), steep-sided compartmentalized lagoons that have abundant fine material (upward of 70% silt or finer), a feature not commonly observed at other Pacific atolls. This fine material has been identified as a peloidal mud and its mode and rate of deposition may be partly controlled by the abundant zooplankton in the lagoons. Recent sediments of Palmyra Atoll are almost entirely carbonate, originating from reef organisms inhabiting the atoll. The only other material is small amounts of siliceous sponge skeletons
An Interview with Dr. O.T. Jim Clagett, MD, September 1975
https://openworks.mdanderson.org/hrc_interviews/1009/thumbnail.jp
Recommended from our members
How do atmospheric rivers form?
Identifying the source of atmospheric rivers: Are they rivers of moisture exported from the subtropics or footprints left behind by poleward travelling storms?
The term atmospheric river is used to describe corridors of strong water vapor transport in the troposphere. Filaments of enhanced water vapor, commonly observed in satellite imagery extending from the subtropics to the extratropics, are routinely used as a proxy for identifying these regions of strong water vapor transport. The precipitation associated with these filaments of enhanced water vapor can lead to high impact flooding events. However, there remains some debate as to how these filaments form. In this paper we analyse the transport of water vapor within a climatology of wintertime North Atlantic extratropical cyclones. Results show that atmospheric rivers are formed by the cold front which sweeps up water vapor in the warm sector as it catches up with the warm front. This causes a narrow band of high water vapor content to form ahead of the cold front at the base of the warm conveyor belt airflow. Thus, water vapor in the cyclone's warm sector, and not long-distance transport of water vapor from the subtropics, is responsible for the generation of filaments of high water vapor content. A continuous cycle of evaporation and moisture convergence within the cyclone replenishes water vapor lost via precipitation. Thus, rather than representing a direct and continuous feed of moist air from the subtropics into the centre of a cyclone (as suggested by the term atmospheric river), these filaments are, in-fact, the result of water vapor exported from the cyclone and thus they represent the footprints left behind as cyclones travel polewards from subtropics
Recommended from our members
Increased wind risk from sting-jet windstorms with climate change
Extra-tropical cyclones dominate autumn and winter weather over western Europe. The strongest cyclones, often termed windstorms, have a large socio-economic impact on landfall due to strong surface winds and coastal storm surges. Climate model integrations have predicted a future increase in the frequency of, and potential damage from, European windstorms and yet these integrations cannot properly represent localised jets, such as sting jets, that may significantly enhance damage. Here we present the first prediction of how the climatology of sting-jet-containing cyclones will change in a future warmer climate, considering the North Atlantic and Europe. A proven sting-jet precursor diagnostic is applied to 13-year present-day and future (2100) climate integrations from the Met Office Unified Model in its Global Atmosphere 3.0 configuration. The present-day climate results are consistent with previously-published results from a reanalysis dataset (with around 32\% of cyclones exhibiting the sing-jet precursor), lending credibility to the analysis of the future-climate integration. The proportion of cyclones exhibiting the sting-jet precursor in the future-climate integration increases to 45\%. Furthermore, while the proportion of explosively-deepening storms increases only slightly in the future climate, the proportion of those storms with the sting-jet precursor increases by 60\%. The European resolved-wind risk associated with explosively-deepening storms containing a sting-jet precursor increases substantially in the future climate; in reality this wind risk is likely to be further enhanced by the release of localised moist instability, unresolved by typical climate models
Magic Angle Spinning Nuclear Magnetic Resonance Characterization of Voltage-Dependent Anion Channel Gating in Two-Dimensional Lipid Crystalline Bilayers
National Institutes of Health (U.S.) (EB001960)National Institutes of Health (EB002026
Irregular S-cone mosaics in felid retinas: spatial interaction with axonless horizontal revealed by cross-correlation
In most mammals short-wavelength-sensitive (S) cones are arranged in irregular patterns with widely variable intercell distances. Consequently, mosaics of connected interneurons either may show some type of correlation to photoreceptor placement or may establish an independent lattice with compensatory dendritic organization. Since axonless horizontal cells (A-HC’s) are supposed to direct all dendrites to overlying cones, we studied their spatial interaction with chromatic cone subclasses. In the cheetah, the bobcat, and the leopard, anti-S-opsin antibodies have consistently colabeled the A-HC’s in addition to the S cones. We investigated the interaction between the two cell mosaics, using autocorrelation and cross-correlation procedures, including a Voronoi-based density probe. Comparisons with simulations of random mosaics show significantly lower densities of S cones above the cell bodies and primary dendrites of A-HC’s. The pattern results in different long-wavelength-sensitive-L- and S-cone ratios in the central versus the peripheral zones of A-HC dendritic fields. The existence of a related pattern at the synaptic level and its potential significance for color processing may be investigated in further studies
- …