997 research outputs found
Molecular Dynamics Simulations of Adhesion at Epoxy Interfaces
The effect of moisture on adhesives used in aerospace applications can be modeled with chemically specific techniques such as molecular dynamics simulation. In the present study, the surface energy and work of adhesion are calculated for epoxy surfaces and interfaces, respectively, by using molecular dynamics simulation. Modifications are made to current theory to calculate the work of adhesion at the epoxy-epoxy interface with and without water. Quantitative agreement with experimental values is obtained for the surface energy and work of adhesion at the interface without water. The work of adhesion agrees qualitatively with the experimental values for the interface with water: the magnitude is reduced 15% with respect to the value for the interface without water. A variation of 26% in the magnitude is observed depending on the water configuration at a concentration of 1.6 wt%. The methods and modifications to the method that are employed to obtain these values are expected to be applicable for other epoxy adhesives to determine the effects of moisture uptake on their work of adhesion
Asymptotic Behaviour of Inhomogeneous String Cosmologies
The asymptotic behaviour at late times of inhomogeneous axion-dilaton
cosmologies is investigated. The space-times considered here admit two abelian
space-like Killing vectors. These space-times evolve towards an anisotropic
universe containing gravitational radiation. Furthermore, a peeling-off
behaviour of the Weyl tensor and the antisymmetric tensor field strength is
found. The relation to the pre-big-bang scenario is briefly discussed.Comment: 15 pages, Late
SATURN: assessing the feasibility of utilising existing registries for real-world evidence data collection to meet patients, regulatory, health technology assessment and payer requirements
Background: SATURN (Systematic Accumulation of Treatment practices and Utilisation, Real world evidence, and Natural history data) for the rare condition osteogenesis imperfecta (OI) has the objective to create a common core dataset by utilising existing, well-established data sources to meet the needs of the various stakeholders (physicians, registry/dataset owners, patients and patient associations, OI community leaders, European [EU] policymakers, regulators, health technology assessments [HTA]s, and healthcare systems including payers). This paper describes the steps taken to assess the feasibility of one existing OI registry (i.e., the Registry of OI [ROI]) as a candidate for SATURN. The same methodology will be applied to other existing OI registries in the future and this same concept could be utilised for other rare disease registries. Methods: The approach to assessing the feasibility of the ROI registry consisted of three steps: (1) an assessment of the registry characteristics using the Registry Evaluation and Quality Standards Tool (REQueST); (2) a gap analysis comparing SATURN required Core Variables to those being captured in the registry’s Case Report Form (CRF); and (3) a compliance check on the data exchange process following the Title 21 of Code of Federal Regulations (CFR) Part 11/EudraLex Annex 11 Compliance Checklist. The first registry that SATURN has assessed is the ROI database at the Istituto Ortopedico Rizzoli (IOR) in Italy. Results: The results from the ROI REQueST have demonstrated satisfactory complete responses in terms of methodology, essential standards, interpretability, and interoperability—readiness for data linkage, data sources, and ethics to meet the needs of data customers. However, the ROI data is from a tertiary referral centre which may limit the ability to understand the full patient journey. The gap analysis has revealed that an exact or logical match between SATURN requested variables and the ROI current variables exists for the following items: patient characteristics, treatment of OI (medical and surgical) and treatment of pain (with the exception of frequency of treatment and reasons for discontinuation), fracture history and bone density. However, data on safety was missing. The compliance check has implied that the ROI implemented appropriate controls for the web-based platform (i.e., Genotype–phenotype Data Integration Platform [GeDI]) that is involved in processing the electronic patient data, and GeDI is a validated/compliant application that follows relevant 21 CFR Part 11/EudraLex Annex 11 regulations. Conclusions: This robust feasibility process highlights potential limitations and opportunities to develop and to refine the collaboration with the ROI as the SATURN programme moves forward. It also ensures that the existing datasets in the rare condition OI are being maximised to respond to the needs of patients, data customers and decision-makers. This feasibility process has allowed SATURN to build a compliant methodology that aligns with the requirements from the European Medicines Agency (EMA) and HTAs. More data variables will continue to be developed and refined along the way with more registries participating in SATURN. As a result, SATURN will become a meaningful and truly collaborative core dataset, which will also contribute to advancing understanding of OI diagnosis, treatment, and care
Particle motion and gravitational lensing in the metric of a dilaton black hole in a de Sitter universe
We consider the metric exterior to a charged dilaton black hole in a de
Sitter universe. We study the motion of a test particle in this metric.
Conserved quantities are identified and the Hamilton-Jacobi method is employed
for the solutions of the equations of motion. At large distances from the black
hole the Hubble expansion of the universe modifies the effective potential such
that bound orbits could exist up to an upper limit of the angular momentum per
mass for the orbiting test particle. We then study the phenomenon of strong
field gravitational lensing by these black holes by extending the standard
formalism of strong lensing to the non-asymptotically flat dilaton-de Sitter
metric. Expressions for the various lensing quantities are obtained in terms of
the metric coefficients.Comment: 8 pages, RevTex, 1 eps figures; discussion improved; typos corrected;
references adde
Initial Conditions in String Cosmology
We take a critical look at a recent conjecture concerning the past attractor
in the pre-big-bang scenario. We argue that the Milne universe is unlikely to
be a general past attractor for such models and support this with a number of
examples.Comment: 10 pages standard Latex format, no figures. Submitted to Phys. Rev.
Inhomogeneous Einstein-Rosen String Cosmology
Families of anisotropic and inhomogeneous string cosmologies containing
non-trivial dilaton and axion fields are derived by applying the global
symmetries of the string effective action to a generalized Einstein-Rosen
metric. The models exhibit a two-dimensional group of Abelian isometries. In
particular, two classes of exact solutions are found that represent
inhomogeneous generalizations of the Bianchi type VI_h cosmology. The
asymptotic behaviour of the solutions is investigated and further applications
are briefly discussed.Comment: Minor extension of concluding section; 18 pages, to appear in
Phys.Rev.
Aquaporin-like water transport in nanoporous crystalline layered carbon nitride
Designing next-generation fuel cell and filtration devices requires the development of nanoporous materials that allow rapid and reversible uptake and directed transport of water molecules. Here, we combine neutron spectroscopy and first-principles calculations to demonstrate rapid transport of molecular H2O through nanometer-sized voids ordered within the layers of crystalline carbon nitride with a polytriazine imide structure. The transport mechanism involves a sequence of molecular orientation reversals directed by hydrogen-bonding interactions as the neutral molecules traverse the interlayer gap and pass through the intralayer voids that show similarities with the transport of water through transmembrane aquaporin channels in biological systems. The results suggest that nanoporous layered carbon nitrides can be useful for developing high-performance membranes
The Atmospheric Chemistry Suite (ACS) of Three Spectrometers for the ExoMars 2016 Trace Gas Orbiter
The Atmospheric Chemistry Suite (ACS) package is an element of the Russian contribution to the ESA-Roscosmos ExoMars 2016 Trace Gas Orbiter (TGO) mission. ACS consists of three separate infrared spectrometers, sharing common mechanical, electrical, and thermal interfaces. This ensemble of spectrometers has been designed and developed in response to the Trace Gas Orbiter mission objectives that specifically address the requirement of high sensitivity instruments to enable the unambiguous detection of trace gases of potential geophysical or biological interest. For this reason, ACS embarks a set of instruments achieving simultaneously very high accuracy (ppt level), very high resolving power (>10,000) and large spectral coverage (0.7 to 17 μm—the visible to thermal infrared range). The near-infrared (NIR) channel is a versatile spectrometer covering the 0.7–1.6 μm spectral range with a resolving power of ∼20,000. NIR employs the combination of an echelle grating with an AOTF (Acousto-Optical Tunable Filter) as diffraction order selector. This channel will be mainly operated in solar occultation and nadir, and can also perform limb observations. The scientific goals of NIR are the measurements of water vapor, aerosols, and dayside or night side airglows. The mid-infrared (MIR) channel is a cross-dispersion echelle instrument dedicated to solar occultation measurements in the 2.2–4.4 μm range. MIR achieves a resolving power of >50,000. It has been designed to accomplish the most sensitive measurements ever of the trace gases present in the Martian atmosphere. The thermal-infrared channel (TIRVIM) is a 2-inch double pendulum Fourier-transform spectrometer encompassing the spectral range of 1.7–17 μm with apodized resolution varying from 0.2 to 1.3 cm−1. TIRVIM is primarily dedicated to profiling temperature from the surface up to ∼60 km and to monitor aerosol abundance in nadir. TIRVIM also has a limb and solar occultation capability. The technical concept of the instrument, its accommodation on the spacecraft, the optical designs as well as some of the calibrations, and the expected performances for its three channels are described
Numerical Study of Inhomogeneous Pre-Big-Bang Inflationary Cosmology
We study numerically the inhomogeneous pre-big-bang inflation in a
spherically symmetric space-time. We find that a large initial inhomogeneity
suppresses the onset of the pre-big-bang inflation. We also find that even if
the pre-big-bang inflationary stage is realized, the initial inhomogeneities
are not homogenized. Namely, during the pre-big-bang inflation
``hairs''(irregularities) do not fall, in sharp contrast to the usual
(potential energy dominated) inflation where initial inhomogeneity and
anisotropy are damped and thus the resulting universe is less sensitive to
initial conditions.Comment: 12 pages + 14 figures, to be published in Phys.Rev.
Qualitative properties of scalar-tensor theories of Gravity
The qualitative properties of spatially homogeneous stiff perfect fluid and
minimally coupled massless scalar field models within general relativity are
discussed. Consequently, by exploiting the formal equivalence under conformal
transformations and field redefinitions of certain classes of theories of
gravity, the asymptotic properties of spatially homogeneous models in a class
of scalar-tensor theories of gravity that includes the Brans-Dicke theory can
be determined. For example, exact solutions are presented, which are analogues
of the general relativistic Jacobs stiff perfect fluid solutions and vacuum
plane wave solutions, which act as past and future attractors in the class of
spatially homogeneous models in Brans-Dicke theory.Comment: 19 page
- …