1,944 research outputs found

    Delayed gastric emptying and reduced postprandial small bowel water content of equicaloric whole meal bread versus rice meals in healthy subjects: novel MRI insights

    Get PDF
    BACKGROUND/OBJECTIVES: Postprandial bloating is a common symptom in patients with functional gastrointestinal (GI) diseases. Whole meal bread (WMB) often aggravates such symptoms though the mechanisms are unclear. We used magnetic resonance imaging (MRI) to monitor the intragastric fate of a WMB meal (11% bran) compared to a rice pudding (RP) meal. SUBJECTS/METHODS: 12 healthy volunteers completed this randomised crossover study. They fasted overnight and after an initial MRI scan consumed a glass of orange juice with a 2267 kJ WMB or an equicaloric RP meal. Subjects underwent serial MRI scans every 45 min up to 270 min to assess gastric volumes and small bowel water content and completed a GI symptom questionnaire. RESULTS: The MRI intragastric appearance of the two meals was markedly different. The WMB meal formed a homogeneous dark bolus with brighter liquid signal surrounding it. The RP meal separated into an upper, liquid layer and a lower particulate layer allowing more rapid emptying of the liquid compared to solid phase (sieving). The WMB meal had longer gastric half emptying times (132±8 min) compared to the RP meal (104±7 min), P<0.008. The WMB meal was associated with markedly reduced MRI-visible small bowel free mobile water content compared to the RP meal, P<0.0001. CONCLUSIONS: WMB bread forms a homogeneous bolus in the stomach which inhibits gastric sieving and hence empties slower than the equicaloric rice meal. These properties may explain why wheat causes postprandial bloating and could be exploited to design foods which prolong satiation

    Induction of humoral immune response to multiple recombinant Rhipicephalus appendiculatus antigens and their effect on tick feeding success and pathogen transmission

    Get PDF
    BACKGROUND: Rhipicephalus appendiculatus is the primary vector of Theileria parva, the etiological agent of East Coast fever (ECF), a devastating disease of cattle in sub-Saharan Africa. We hypothesized that a vaccine targeting tick proteins that are involved in attachment and feeding might affect feeding success and possibly reduce tick-borne transmission of T. parva. Here we report the evaluation of a multivalent vaccine cocktail of tick antigens for their ability to reduce R. appendiculatus feeding success and possibly reduce tick-transmission of T. parva in a natural host-tick-parasite challenge model. METHODS: Cattle were inoculated with a multivalent antigen cocktail containing recombinant tick protective antigen subolesin as well as two additional R. appendiculatus saliva antigens: the cement protein TRP64, and three different histamine binding proteins. The cocktail also contained the T. parva sporozoite antigen p67C. The effect of vaccination on the feeding success of nymphal and adult R. appendiculatus ticks was evaluated together with the effect on transmission of T. parva using a tick challenge model. RESULTS: To our knowledge, this is the first evaluation of the anti-tick effects of these antigens in the natural host-tick-parasite combination. In spite of evidence of strong immune responses to all of the antigens in the cocktail, vaccination with this combination of tick and parasite antigens did not appear to effect tick feeding success or reduce transmission of T. parva. CONCLUSION: The results of this study highlight the importance of early evaluation of anti-tick vaccine candidates in biologically relevant challenge systems using the natural tick-host-parasite combination

    Breast cancer risk reduction:is it feasible to initiate a randomised controlled trial of a lifestyle intervention programme (ActWell) within a national breast screening programme?

    Get PDF
    BackgroundBreast cancer is the most commonly diagnosed cancer and the second cause of cancer deaths amongst women in the UK. The incidence of the disease is increasing and is highest in women from least deprived areas. It is estimated that around 42% of the disease in post-menopausal women could be prevented by increased physical activity and reductions in alcohol intake and body fatness. Breast cancer control endeavours focus on national screening programmes but these do not include communications or interventions for risk reductionThis study aimed to assess the feasibility of delivery, indicative effects and acceptability of a lifestyle intervention programme initiated within the NHS Scottish Breast Screening Programme (NHSSBSP).MethodsA 1:1 randomised controlled trial (RCT) of the 3 month ActWell programme (focussing on body weight, physical activity and alcohol) versus usual care conducted in two NHSSBSP sites between June 2013 and January 2014. Feasibility assessments included recruitment, retention, and fidelity to protocol. Indicative outcomes were measured at baseline and 3 month follow-up (body weight, waist circumference, eating and alcohol habits and physical activity. At study end, a questionnaire assessed participant satisfaction and qualitative interviews elicited women¿s, coaches and radiographers¿ experiences. Statistical analysis used Chi squared tests for comparisons in proportions and paired t tests for comparisons of means. Linear regression analyses were performed, adjusted for baseline values, with group allocation as a fixed effectResultsA pre-set recruitment target of 80 women was achieved within 12 weeks and 65 (81%) participants (29 intervention, 36 control) completed 3 month assessments. Mean age was 58¿±¿5.6 years, mean BMI was 29.2¿±¿7.0 kg/m2 and many (44%) reported a family history of breast cancer.The primary analysis (baseline body weight adjusted) showed a significant between group difference favouring the intervention group of 2.04 kg (95%CI ¿3.24 kg to ¿0.85 kg). Significant, favourable between group differences were also detected for BMI, waist circumference, physical activity and sitting time. Women rated the programme highly and 70% said they would recommend it to others.ConclusionsRecruitment, retention, indicative results and participant acceptability support the development of a definitive RCT to measure long term effects.Trial registrationThe trial was registered with Current Controlled Trials (ISRCTN56223933)

    Distinguishing Asthma Phenotypes Using Machine Learning Approaches.

    Get PDF
    Asthma is not a single disease, but an umbrella term for a number of distinct diseases, each of which are caused by a distinct underlying pathophysiological mechanism. These discrete disease entities are often labelled as asthma endotypes. The discovery of different asthma subtypes has moved from subjective approaches in which putative phenotypes are assigned by experts to data-driven ones which incorporate machine learning. This review focuses on the methodological developments of one such machine learning technique-latent class analysis-and how it has contributed to distinguishing asthma and wheezing subtypes in childhood. It also gives a clinical perspective, presenting the findings of studies from the past 5 years that used this approach. The identification of true asthma endotypes may be a crucial step towards understanding their distinct pathophysiological mechanisms, which could ultimately lead to more precise prevention strategies, identification of novel therapeutic targets and the development of effective personalized therapies

    Evo-devo of human adolescence: beyond disease models of early puberty

    Get PDF
    Despite substantial heritability in pubertal development, much variation remains to be explained, leaving room for the influence of environmental factors to adjust its phenotypic trajectory in the service of fitness goals. Utilizing evolutionary development biology (evo-devo), we examine adolescence as an evolutionary life-history stage in its developmental context. We show that the transition from the preceding stage of juvenility entails adaptive plasticity in response to energy resources, other environmental cues, social needs of adolescence and maturation toward youth and adulthood. Using the evolutionary theory of socialization, we show that familial psychosocial stress fosters a fast life history and reproductive strategy rather than early maturation being just a risk factor for aggression and delinquency. Here we explore implications of an evolutionary-developmental-endocrinological-anthropological framework for theory building, while illuminating new directions for research

    Molecular and cellular mechanisms underlying the evolution of form and function in the amniote jaw.

    Get PDF
    The amniote jaw complex is a remarkable amalgamation of derivatives from distinct embryonic cell lineages. During development, the cells in these lineages experience concerted movements, migrations, and signaling interactions that take them from their initial origins to their final destinations and imbue their derivatives with aspects of form including their axial orientation, anatomical identity, size, and shape. Perturbations along the way can produce defects and disease, but also generate the variation necessary for jaw evolution and adaptation. We focus on molecular and cellular mechanisms that regulate form in the amniote jaw complex, and that enable structural and functional integration. Special emphasis is placed on the role of cranial neural crest mesenchyme (NCM) during the species-specific patterning of bone, cartilage, tendon, muscle, and other jaw tissues. We also address the effects of biomechanical forces during jaw development and discuss ways in which certain molecular and cellular responses add adaptive and evolutionary plasticity to jaw morphology. Overall, we highlight how variation in molecular and cellular programs can promote the phenomenal diversity and functional morphology achieved during amniote jaw evolution or lead to the range of jaw defects and disease that affect the human condition

    In vitro assembly of Ebola virus nucleocapsid-like complex expressed in E. coli

    Get PDF
    Ebola virus (EBOV) harbors an RNA genome encapsidated by nucleoprotein (NP) along with other viral proteins to form a nucleocapsid complex. Previous Cryo-eletron tomography and biochemical studies have shown the helical structure of EBOV nucleocapsid at nanometer resolution and the first 450 amino-acid of NP (NPΔ451–739) alone is capable of forming a helical nucleocapsid-like complex (NLC). However, the structural basis for NP-NP interaction and the dynamic procedure of the nucleocapsid assembly is yet poorly understood. In this work, we, by using an E. coli expression system, captured a series of images of NPΔ451–739 conformers at different stages of NLC assembly by negative-stain electron microscopy, which allowed us to picture the dynamic procedure of EBOV nucleocapsid assembly. Along with further biochemical studies, we showed the assembly of NLC is salt-sensitive, and also established an indispensible role of RNA in this process. We propose the diverse modes of NLC elongation might be the key determinants shaping the plasticity of EBOV virions. Our findings provide a new model for characterizing the self-oligomerization of viral nucleoproteins and studying the dynamic assembly process of viral nucleocapsid in vitro

    Annual and seasonal movements of migrating short-tailed shearwaters reflect environmental variation in sub-Arctic and Arctic waters

    Get PDF
    The marine ecosystems of the Bering Sea and adjacent southern Chukchi Sea are experiencing rapid changes due to recent reductions in sea ice. Short-tailed shearwaters Puffinus tenuirostris visit this region in huge numbers between the boreal summer and autumn during non-breeding season, and represent one of the dominant top predators. To understand the implications for this species of ongoing environmental change in the Pacific sub-Arctic and Arctic seas, we tracked the migratory movements of 19 and 24 birds in 2010 and 2011, respectively, using light-level geolocators. In both years, tracked birds occupied the western (Okhotsk Sea and Kuril Islands) and eastern (southeast Bering Sea) North Pacific from May to July. In August–September of 2010, but not 2011, a substantial proportion (68 % of the tracked individuals in 2010 compared to 38 % in 2011) moved through the Bering Strait to feed in the Chukchi Sea. Based on the correlation with oceanographic variables, the probability of shearwater occurrence was highest in waters with sea surface temperatures (SSTs) of 8–10 °C over shallow depths. Furthermore, shearwaters spent more time flying when SST was warmer than 9 °C, suggesting increased search effort for prey. We hypothesized that the northward shift in the distribution of shearwaters may have been related to temperature-driven changes in the abundance of their dominant prey, krill (Euphausiacea), as the timing of krill spawning coincides with the seasonal increase in water temperature. Our results indicate a flexible response of foraging birds to ongoing changes in the sub-Arctic and Arctic ecosystems

    Prediction of higher mortality reduction for the UK Breast Screening Frequency Trial: A model-based approach on screening intervals

    Get PDF
    Background: The optimal interval between two consecutive mammograms is uncertain. The UK Frequency Trial did not show a significant difference in breast cancer mortality between screening every year (study group) and screening every 3 years (control group). In this study, the trial is simulated in order to gain insight into the results of the trial and to predict the effect of different screening intervals on breast cancer mortality. Methods: UK incidence, life tables and information from the trial were used in the microsimulation model MISCAN-Fadia to simulate the trial and predict the number of breast ca
    corecore