1,940 research outputs found

    The importance of the weak: Interaction modifiers in artificial spin ices

    Get PDF
    The modification of geometry and interactions in two-dimensional magnetic nanosystems has enabled a range of studies addressing the magnetic order, collective low-energy dynamics, and emergent magnetic properties, in e.g. artificial spin ice structures. The common denominator of all these investigations is the use of Ising-like mesospins as building blocks, in the form of elongated magnetic islands. Here we introduce a new approach: single interaction modifiers, using slave-mesospins in the form of discs, within which the mesospin is free to rotate in the disc plane. We show that by placing these on the vertices of square artificial spin ice arrays and varying their diameter, it is possible to tailor the strength and the ratio of the interaction energies. We demonstrate the existence of degenerate ice-rule obeying states in square artificial spin ice structures, enabling the exploration of thermal dynamics in a spin liquid manifold. Furthermore, we even observe the emergence of flux lattices on larger length-scales, when the energy landscape of the vertices is reversed. The work highlights the potential of a design strategy for two-dimensional magnetic nano-architectures, through which mixed dimensionality of mesospins can be used to promote thermally emergent mesoscale magnetic states.Comment: 17 pages, including methods, 4 figures. Supplementary information contains 16 pages and 15 figure

    Structurally Defined Conditional Data-Flow Static Analysis

    Get PDF
    Data flow analysis (DFA) is an important verification technique that computes the effect of data values propagating over program paths. While more precise than flow-insensitive analyses, such an analysis is time-consuming. This paper investigates the acceleration of DFA by structural decomposition of the underlying control flow graph. Specifically, we explore the cost and effectiveness of dividing program paths into subsets by partitioning path suffixes at conditional statements, applying a DFA on each subset, and then combining the resulting invariants. This yields a family of independent DFA problems that are solved in parallel and where the partial results of each problem represent safe program invariants. Empirical evaluations reveal that depending on the DFA type and its conditional implementation the invariants for a large fraction of program points can be computed in less time than traditional DFA. This work suggests a strategy for an “anytime DFA” algorithm: computing safe program invariants as the analysis proceeds

    52-week efficacy and safety of telbivudine with conditional tenofovir intensification at week 24 in HBeAg-positive chronic Hepatitis B

    Get PDF
    Background and Aims: The Roadmap concept is a therapeutic framework in chronic hepatitis B for the intensification of nucleoside analogue monotherapy based on early virologic response. The efficacy and safety of this approach applied to telbivudine treatment has not been investigated. Methods: A multinational, phase IV, single-arm open-label study (ClinicalTrials.gov ID NCT00651209) was undertaken in HBeAg-positive, nucleoside-naive adult patients with chronic hepatitis B. Patients received telbivudine (600 mg once-daily) for 24 weeks, after which those with undetectable serum HBV DNA (<300 copies/mL) continued to receive telbivudine alone while those with detectable DNA received telbivudine plus tenofovir (300 mg once-daily). Outcomes were assessed at Week 52. Results: 105 patients commenced telbivudine monotherapy, of whom 100 were included in the efficacy analysis. Fifty-five (55%) had undetectable HBV DNA at Week 24 and continued telbivudine monotherapy; 45 (45%) received tenofovir intensification. At Week 52, the overall proportion of undetectable HBV DNA was 93% (93/100) by last-observation-carried-forward analysis (100% monotherapy group, 84% intensification group) and no virologic breakthroughs had occurred. ALT normalization occurred in 77% (87% monotherapy, 64% intensification), HBeAg clearance in 43% (65% monotherapy, 16% intensification), and HBeAg seroconversion in 39% (62% monotherapy, 11% intensification). Six patients had HBsAg clearance. Myalgia was more common in the monotherapy group (19% versus 7%). No decrease in the mean glomerular filtration rate occurred in either treatment group at Week 52. Conclusions: Telbivudine therapy with tenofovir intensification at Week 24, where indicated by the Roadmap strategy, appears effective and well tolerated for the treatment of chronic hepatitis B. Trial Registration: ClinicalTrials.gov NCT0065120

    The Role of Parvalbumin-positive Interneurons in Auditory Steady-State Response Deficits in Schizophrenia

    Get PDF
    © The Author(s) 2019. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.Despite an increasing body of evidence demonstrating subcellular alterations in parvalbumin-positive (PV+) interneurons in schizophrenia, their functional consequences remain elusive. Since PV+ interneurons are involved in the generation of fast cortical rhythms, these changes have been hypothesized to contribute to well-established alterations of beta and gamma range oscillations in patients suffering from schizophrenia. However, the precise role of these alterations and the role of different subtypes of PV+ interneurons is still unclear. Here we used a computational model of auditory steady-state response (ASSR) deficits in schizophrenia. We investigated the differential effects of decelerated synaptic dynamics, caused by subcellular alterations at two subtypes of PV+ interneurons: basket cells and chandelier cells. Our simulations suggest that subcellular alterations at basket cell synapses rather than chandelier cell synapses are the main contributor to these deficits. Particularly, basket cells might serve as target for innovative therapeutic interventions aiming at reversing the oscillatory deficits.Peer reviewe

    Bidirectional lipid droplet velocities are controlled by differential binding strengths of HCV Core DII protein

    Get PDF
    Host cell lipid droplets (LD) are essential in the hepatitis C virus (HCV) life cycle and are targeted by the viral capsid core protein. Core-coated LDs accumulate in the perinuclear region and facilitate viral particle assembly, but it is unclear how mobility of these LDs is directed by core. Herein we used two-photon fluorescence, differential interference contrast imaging, and coherent anti-Stokes Raman scattering microscopies, to reveal novel core-mediated changes to LD dynamics. Expression of core protein’s lipid binding domain II (DII-core) induced slower LD speeds, but did not affect directionality of movement on microtubules. Modulating the LD binding strength of DII-core further impacted LD mobility, revealing the temporal effects of LD-bound DII-core. These results for DII-core coated LDs support a model for core-mediated LD localization that involves core slowing down the rate of movement of LDs until localization at the perinuclear region is accomplished where LD movement ceases. The guided localization of LDs by HCV core protein not only is essential to the viral life cycle but also poses an interesting target for the development of antiviral strategies against HCV

    Protein crystals in adenovirus type 5-infected cells: requirements for intranuclear crystallogenesis, structural and functional analysis

    Get PDF
    Intranuclear crystalline inclusions have been observed in the nucleus of epithelial cells infected with Adenovirus serotype 5 (Ad5) at late steps of the virus life cycle. Using immuno-electron microscopy and confocal microscopy of cells infected with various Ad5 recombinants modified in their penton base or fiber domains, we found that these inclusions represented crystals of penton capsomers, the heteromeric capsid protein formed of penton base and fiber subunits. The occurrence of protein crystals within the nucleus of infected cells required the integrity of the fiber knob and part of the shaft domain. In the knob domain, the region overlapping residues 489–492 in the FG loop was found to be essential for crystal formation. In the shaft, a large deletion of repeats 4 to 16 had no detrimental effect on crystal inclusions, whereas deletion of repeats 8 to 21 abolished crystal formation without altering the level of fiber protein expression. This suggested a crucial role of the five penultimate repeats in the crystallisation process. Chimeric pentons made of Ad5 penton base and fiber domains from different serotypes were analyzed with respect to crystal formation. No crystal was found when fiber consisted of shaft (S) from Ad5 and knob (K) from Ad3 (heterotypic S5-K3 fiber), but occurred with homotypic S3K3 fiber. However, less regular crystals were observed with homotypic S35-K35 fiber. TB5, a monoclonal antibody directed against the Ad5 fiber knob was found by immunofluorescence microscopy to react with high efficiency with the intranuclear protein crystals in situ. Data obtained with Ad fiber mutants indicated that the absence of crystalline inclusions correlated with a lower infectivity and/or lower yields of virus progeny, suggesting that the protein crystals might be involved in virion assembly. Thus, we propose that TB5 staining of Ad-infected 293 cells can be used as a prognostic assay for the viability and productivity of fiber-modified Ad5 vectors
    corecore