2,086 research outputs found

    The Off-Shell Electromagnetic T-matrix: momentum-dependent scattering from spherical inclusions with both dielectric and magnetic contrast

    Full text link
    The momentum- and frequency-dependent T-matrix operator for the scattering of electromagnetic waves by a dielectric/conducting and para- or diamagnetic sphere is derived as a Mie-type series, and presented in a compact form emphasizing various symmetry properties, notably the unitarity identity. This result extends to magnetic properties one previously obtained for purely dielectric contrasts by other authors. Several situations useful to spatially-dispersive effective-medium approximations to one-body order are examined. Partial summation of the Mie series is achieved in the case of elastic scattering.Comment: 22 pages. Preprint of a paper to appear in `Waves in Complex And Random Media' ((c) Taylor and Francis, 2011

    Red supergiants as cosmic abundance probes: The first direct metallicity determination of NGC 4038 in the antennae.

    Get PDF
    We present a direct determination of the stellar metallicity in the close pair galaxy NGC 4038 (D= 20 Mpc) based on the quantitative analysis of moderate resolution KMOS/VLT spectra of three super star clusters (SSCs). The method adopted in our analysis has been developed and optimised to measure accurate metallicities from atomic lines in the J-band of single red supergiant (RSG) or RSG-dominated star clusters. Hence, our metallicity measurements are not a_ected by the biases and poorly understood systematics inherent to strong line H II methods which are routinely applied to massive data sets of galaxies. We _nd [Z]= +0.07 _ 0.03 and compare our measurements to H II strong line calibrations. Our abundances and literature data suggest the presence of a at metallicity gradient, which can be explained as redistribution of metal-rich gas following the strong interaction

    A companion to a quasar at redshift 4.7

    Get PDF
    There is a growing consensus that the emergence of quasars at high redshifts is related to the onset of galaxy formation, suggesting that the detection of concentrations of gas accompanying such quasars should provide clues about the early history of galaxies. Quasar companions have been recently identified at redshifts up to z3z \approx 3. Here we report observations of Lyman-α\alpha emission (a tracer of ionised hydrogen) from the companion to a quasar at zz=4.702, corresponding to a time when the Universe was less than ten per cent of its present age. We argue that most of the emission arises in a gaseous nebula that has been photoionised by the quasar, but an additional component of continuum light -perhaps quasar light scattered from dust in the companion body, or emission from young stars within the nebula- appears necessary to explain the observations. These observations may be indicative of the first stages in the assembly of galaxy-sized structures.Comment: 8 pages, 4 figures, plain LaTeX. Accepted for publication in Natur

    Dynamic Analysis of Vascular Morphogenesis Using Transgenic Quail Embryos

    Get PDF
    Background: One of the least understood and most central questions confronting biologists is how initially simple clusters or sheet-like cell collectives can assemble into highly complex three-dimensional functional tissues and organs. Due to the limits of oxygen diffusion, blood vessels are an essential and ubiquitous presence in all amniote tissues and organs. Vasculogenesis, the de novo self-assembly of endothelial cell (EC) precursors into endothelial tubes, is the first step in blood vessel formation [1]. Static imaging and in vitro models are wholly inadequate to capture many aspects of vascular pattern formation in vivo, because vasculogenesis involves dynamic changes of the endothelial cells and of the forming blood vessels, in an embryo that is changing size and shape. Methodology/Principal Findings: We have generated Tie1 transgenic quail lines Tg(tie1:H2B-eYFP) that express H2B-eYFP in all of their endothelial cells which permit investigations into early embryonic vascular morphogenesis with unprecedented clarity and insight. By combining the power of molecular genetics with the elegance of dynamic imaging, we follow the precise patterning of endothelial cells in space and time. We show that during vasculogenesis within the vascular plexus, ECs move independently to form the rudiments of blood vessels, all while collectively moving with gastrulating tissues that flow toward the embryo midline. The aortae are a composite of somatic derived ECs forming its dorsal regions and the splanchnic derived ECs forming its ventral region. The ECs in the dorsal regions of the forming aortae exhibit variable mediolateral motions as they move rostrally; those in more ventral regions show significant lateral-to-medial movement as they course rostrally. Conclusions/Significance: The present results offer a powerful approach to the major challenge of studying the relative role(s) of the mechanical, molecular, and cellular mechanisms of vascular development. In past studies, the advantages of the molecular genetic tools available in mouse were counterbalanced by the limited experimental accessibility needed for imaging and perturbation studies. Avian embryos provide the needed accessibility, but few genetic resources. The creation of transgenic quail with labeled endothelia builds upon the important roles that avian embryos have played in previous studies of vascular development

    Higgs friends and counterfeits at hadron colliders

    Get PDF
    We consider the possibility of "Higgs counterfeits" - scalars that can be produced with cross sections comparable to the SM Higgs, and which decay with identical relative observable branching ratios, but which are nonetheless not responsible for electroweak symmetry breaking. We also consider a related scenario involving "Higgs friends," fields similarly produced through gg fusion processes, which would be discovered through diboson channels WW, ZZ, gamma gamma, or even gamma Z, potentially with larger cross sections times branching ratios than for the Higgs. The discovery of either a Higgs friend or a Higgs counterfeit, rather than directly pointing towards the origin of the weak scale, would indicate the presence of new colored fields necessary for the sizable production cross section (and possibly new colorless but electroweakly charged states as well, in the case of the diboson decays of a Higgs friend). These particles could easily be confused for an ordinary Higgs, perhaps with an additional generation to explain the different cross section, and we emphasize the importance of vector boson fusion as a channel to distinguish a Higgs counterfeit from a true Higgs. Such fields would naturally be expected in scenarios with "effective Z's," where heavy states charged under the SM produce effective charges for SM fields under a new gauge force. We discuss the prospects for discovery of Higgs counterfeits, Higgs friends, and associated charged fields at the LHC.Comment: 27 pages, 5 figures. References added and typos fixe
    corecore