There is a growing consensus that the emergence of quasars at high redshifts
is related to the onset of galaxy formation, suggesting that the detection of
concentrations of gas accompanying such quasars should provide clues about the
early history of galaxies. Quasar companions have been recently identified at
redshifts up to z≈3. Here we report observations of Lyman-α
emission (a tracer of ionised hydrogen) from the companion to a quasar at
z=4.702, corresponding to a time when the Universe was less than ten per cent
of its present age. We argue that most of the emission arises in a gaseous
nebula that has been photoionised by the quasar, but an additional component of
continuum light -perhaps quasar light scattered from dust in the companion
body, or emission from young stars within the nebula- appears necessary to
explain the observations. These observations may be indicative of the first
stages in the assembly of galaxy-sized structures.Comment: 8 pages, 4 figures, plain LaTeX. Accepted for publication in Natur