1,798 research outputs found
Impact of 3 Tesla MRI on interobserver agreement in clinically isolated syndrome: A MAGNIMS multicentre study
Compared to 1.5 T, 3 T magnetic resonance imaging (MRI) increases signal-to-noise ratio leading to improved image quality. However, its clinical relevance in clinically isolated syndrome suggestive of multiple sclerosis remains uncertain
G protein-coupled receptor kinase 2 activity impairs cardiac glucose uptake and promotes insulin resistance after myocardial ischemia.
Fully automated grey and white matter segmentation of the cervical cord in vivo
We propose and validate a new fully automated spinal cord (SC) segmentation technique that incorporates two different multi-atlas segmentation propagation and fusion techniques: Optimized PatchMatch Label fusion (OPAL) and Similarity and Truth Estimation for Propagated Segmentations (STEPS). We collaboratively join the advantages of each method to obtain the most accurate SC segmentation. The new method reaches the inter-rater variability, providing automatic segmentations equivalents to inter-rater segmentations in terms of DSC 0.97 for whole cord for any subject
Recommended from our members
Loss of the xeroderma pigmentosum group B protein binding site impairs p210 BCR/ABL1 leukemogenic activity
Previous studies have demonstrated that p210 BCR/ABL1 interacts directly with the xeroderma pigmentosum group B (XPB) protein, and that XPB is phosphorylated on tyrosine in cells that express p210 BCR/ABL1. In the current study, we have constructed a p210 BCR/ABL1 mutant that can no longer bind to XPB. The mutant has normal kinase activity and interacts with GRB2, but can no longer phosphorylate XPB. Loss of XPB binding is associated with reduced expression of c-MYC and reduced transforming potential in ex-vivo clonogenicity assays, but does not affect nucleotide excision repair in lymphoid or myeloid cells. When examined in a bone marrow transplantation (BMT) model for chronic myelogenous leukemia, mice that express the mutant exhibit attenuated myeloproliferation and lymphoproliferation when compared with mice that express unmodified p210 BCR/ABL1. Thus, the mutant-transplanted mice show predominantly neutrophilic expansion and altered progenitor expansion, and have significantly extended lifespans. This was confirmed in a BMT model for B-cell acute lymphoblastic leukemia, wherein the majority of the mutant-transplanted mice remain disease free. These results suggest that the interaction between p210 BCR/ABL1 and XPB can contribute to disease progression by influencing the lineage commitment of lymphoid and myeloid progenitors
Femtosecond control of electric currents at the interfaces of metallic ferromagnetic heterostructures
The idea to utilize not only the charge but also the spin of electrons in the
operation of electronic devices has led to the development of spintronics,
causing a revolution in how information is stored and processed. A novel
advancement would be to develop ultrafast spintronics using femtosecond laser
pulses. Employing terahertz (10 Hz) emission spectroscopy, we
demonstrate optical generation of spin-polarized electric currents at the
interfaces of metallic ferromagnetic heterostructures at the femtosecond
timescale. The direction of the photocurrent is controlled by the helicity of
the circularly polarized light. These results open up new opportunities for
realizing spintronics in the unprecedented terahertz regime and provide new
insights in all-optical control of magnetism.Comment: 3 figures and 2 tables in the main tex
A deeply branching thermophilic bacterium with an ancient acetyl-CoA pathway dominates a subsurface ecosystem
<div><p>A nearly complete genome sequence of <em>Candidatus</em> ‘Acetothermum autotrophicum’, a presently uncultivated bacterium in candidate division OP1, was revealed by metagenomic analysis of a subsurface thermophilic microbial mat community. Phylogenetic analysis based on the concatenated sequences of proteins common among 367 prokaryotes suggests that <em>Ca.</em> ‘A. autotrophicum’ is one of the earliest diverging bacterial lineages. It possesses a folate-dependent Wood-Ljungdahl (acetyl-CoA) pathway of CO<sub>2</sub> fixation, is predicted to have an acetogenic lifestyle, and possesses the newly discovered archaeal-autotrophic type of bifunctional fructose 1,6-bisphosphate aldolase/phosphatase. A phylogenetic analysis of the core gene cluster of the acethyl-CoA pathway, shared by acetogens, methanogens, some sulfur- and iron-reducers and dechlorinators, supports the hypothesis that the core gene cluster of <em>Ca.</em> ‘A. autotrophicum’ is a particularly ancient bacterial pathway. The habitat, physiology and phylogenetic position of <em>Ca.</em> ‘A. autotrophicum’ support the view that the first bacterial and archaeal lineages were H<sub>2</sub>-dependent acetogens and methanogenes living in hydrothermal environments.</p> </div
Fully automated grey and white matter spinal cord segmentation
Axonal loss in the spinal cord is one of the main contributing factors to irreversible clinical disability in multiple sclerosis (MS). In vivo axonal loss can be assessed indirectly by estimating a reduction in the cervical cross-sectional area (CSA) of the spinal cord over time, which is indicative of spinal cord atrophy, and such a measure may be obtained by means of image segmentation using magnetic resonance imaging (MRI). In this work, we propose a new fully automated spinal cord segmentation technique that incorporates two different multi-atlas segmentation propagation and fusion techniques: The Optimized PatchMatch Label fusion (OPAL) algorithm for localising and approximately segmenting the spinal cord, and the Similarity and Truth Estimation for Propagated Segmentations (STEPS) algorithm for segmenting white and grey matter simultaneously. In a retrospective analysis of MRI data, the proposed method facilitated CSA measurements with accuracy equivalent to the inter-rater variability, with a Dice score (DSC) of 0.967 at C2/C3 level. The segmentation performance for grey matter at C2/C3 level was close to inter-rater variability, reaching an accuracy (DSC) of 0.826 for healthy subjects and 0.835 people with clinically isolated syndrome MS
Fuzzy Fibers: Uncertainty in dMRI Tractography
Fiber tracking based on diffusion weighted Magnetic Resonance Imaging (dMRI)
allows for noninvasive reconstruction of fiber bundles in the human brain. In
this chapter, we discuss sources of error and uncertainty in this technique,
and review strategies that afford a more reliable interpretation of the
results. This includes methods for computing and rendering probabilistic
tractograms, which estimate precision in the face of measurement noise and
artifacts. However, we also address aspects that have received less attention
so far, such as model selection, partial voluming, and the impact of
parameters, both in preprocessing and in fiber tracking itself. We conclude by
giving impulses for future research
Dispersively detected Pauli Spin-Blockade in a Silicon Nanowire Field-Effect Transistor
We report the dispersive readout of the spin state of a double quantum dot
formed at the corner states of a silicon nanowire field-effect transistor. Two
face-to-face top-gate electrodes allow us to independently tune the charge
occupation of the quantum dot system down to the few-electron limit. We measure
the charge stability of the double quantum dot in DC transport as well as
dispersively via in-situ gate-based radio frequency reflectometry, where one
top-gate electrode is connected to a resonator. The latter removes the need for
external charge sensors in quantum computing architectures and provides a
compact way to readout the dispersive shift caused by changes in the quantum
capacitance during interdot charge transitions. Here, we observe Pauli
spin-blockade in the high-frequency response of the circuit at finite magnetic
fields between singlet and triplet states. The blockade is lifted at higher
magnetic fields when intra-dot triplet states become the ground state
configuration. A lineshape analysis of the dispersive phase shift reveals
furthermore an intradot valley-orbit splitting of 145 eV.
Our results open up the possibility to operate compact CMOS technology as a
singlet-triplet qubit and make split-gate silicon nanowire architectures an
ideal candidate for the study of spin dynamics
- …
