316 research outputs found
Weak Transitions in A=6 and 7 Nuclei
The He beta decay and Be electron capture processes are studied using
variational Monte Carlo wave functions, derived from a realistic Hamiltonian
consisting of the Argonne two-nucleon and Urbana-IX three-nucleon
interactions. The model for the nuclear weak axial current includes one- and
two-body operators with the strength of the leading two-body term--associated
with -isobar excitation of the nucleon--adjusted to reproduce the
Gamow-Teller matrix element in tritium -decay. The measured half-life of
. He is under-predicted by theory by 8%, while that of Be for
decay into the ground and first excited states of Li is over-predicted by
9%. However, the experimentally known branching ratio for these latter
processes is in good agreement with the calculated value. Two-body axial
current contributions lead to a 1.7% (4.4%) increase in the value of
the Gamow-Teller matrix element of He (Be), obtained with one-body
currents only, and slightly worsen (appreciably improve) the agreement between
the calculated and measured half-life. Corrections due to retardation effects
associated with the finite lepton momentum transfers involved in the decays, as
well as contributions of suppressed transitions induced by the weak vector
charge and axial current operators, have also been calculated and found to be
negligible.Comment: 23 pages 8 tables. submitted to Phys. Rev.
Fock Representations of Quantum Fields with Generalized Statistic
We develop a rigorous framework for constructing Fock representations of
quantum fields obeying generalized statistics associated with certain solutions
of the spectral quantum Yang-Baxter equation. The main features of these
representations are investigated. Various aspects of the underlying
mathematical structure are illustrated by means of explicit examples.Comment: 26 pages, Te
An Exact Diagonalization Demonstration of Incommensurability and Rigid Band Filling for N Holes in the t-J Model
We have calculated S(q) and the single particle distribution function
for N holes in the t - J model on a non--square sqrt{8} X sqrt{32} 16--site
lattice with periodic boundary conditions; we justify the use of this lattice
in compariosn to those of having the full square symmetry of the bulk. This new
cluster has a high density of vec k points along the diagonal of reciprocal
space, viz. along k = (k,k). The results clearly demonstrate that when the
single hole problem has a ground state with a system momentum of vec k =
(pi/2,pi/2), the resulting ground state for N holes involves a shift of the
peak of the system's structure factor away from the antiferromagnetic state.
This shift effectively increases continuously with N. When the single hole
problem has a ground state with a momentum that is not equal to k =
(pi/2,pi/2), then the above--mentioned incommensurability for N holes is not
found. The results for the incommensurate ground states can be understood in
terms of rigid--band filling: the effective occupation of the single hole k =
(pi/2,pi/2) states is demonstrated by the evaluation of the single particle
momentum distribution function . Unlike many previous studies, we show
that for the many hole ground state the occupied momentum states are indeed k =
(+/- pi/2,+/- pi/2) states.Comment: Revtex 3.0; 23 pages, 1 table, and 13 figures, all include
Linear Response, Validity of Semi-Classical Gravity, and the Stability of Flat Space
A quantitative test for the validity of the semi-classical approximation in
gravity is given. The criterion proposed is that solutions to the
semi-classical Einstein equations should be stable to linearized perturbations,
in the sense that no gauge invariant perturbation should become unbounded in
time. A self-consistent linear response analysis of these perturbations, based
upon an invariant effective action principle, necessarily involves metric
fluctuations about the mean semi-classical geometry, and brings in the
two-point correlation function of the quantum energy-momentum tensor in a
natural way. This linear response equation contains no state dependent
divergences and requires no new renormalization counterterms beyond those
required in the leading order semi-classical approximation. The general linear
response criterion is applied to the specific example of a scalar field with
arbitrary mass and curvature coupling in the vacuum state of Minkowski
spacetime. The spectral representation of the vacuum polarization function is
computed in n dimensional Minkowski spacetime, and used to show that the flat
space solution to the semi-classical Einstein equations for n=4 is stable to
all perturbations on distance scales much larger than the Planck length.Comment: 22 pages: This is a significantly expanded version of gr-qc/0204083,
with two additional sections and two new appendices giving a complete,
explicit example of the semi-classical stability criterion proposed in the
previous pape
Annihilation vs. Decay: Constraining dark matter properties from a gamma-ray detection
Most proposed dark matter candidates are stable and are produced thermally in
the early Universe. However, there is also the possibility of unstable (but
long-lived) dark matter, produced thermally or otherwise. We propose a strategy
to distinguish between dark matter annihilation and/or decay in the case that a
clear signal is detected in gamma-ray observations of Milky Way dwarf
spheroidal galaxies with gamma-ray experiments. The sole measurement of the
energy spectrum of an indirect signal would render the discrimination between
these cases impossible. We show that by examining the dependence of the
intensity and energy spectrum on the angular distribution of the emission, the
origin could be identified as decay, annihilation, or both. In addition, once
the type of signal is established, we show how these measurements could help to
extract information about the dark matter properties, including mass,
annihilation cross section, lifetime, dominant annihilation and decay channels,
and the presence of substructure. Although an application of the approach
presented here would likely be feasible with current experiments only for very
optimistic dark matter scenarios, the improved sensitivity of upcoming
experiments could enable this technique to be used to study a wider range of
dark matter models.Comment: 29 pp, 8 figs; replaced to match published version (minor changes and
some new references
Spin-Charge Separation in the Model: Magnetic and Transport Anomalies
A real spin-charge separation scheme is found based on a saddle-point state
of the model. In the one-dimensional (1D) case, such a saddle-point
reproduces the correct asymptotic correlations at the strong-coupling
fixed-point of the model. In the two-dimensional (2D) case, the transverse
gauge field confining spinon and holon is shown to be gapped at {\em finite
doping} so that a spin-charge deconfinement is obtained for its first time in
2D. The gap in the gauge fluctuation disappears at half-filling limit, where a
long-range antiferromagnetic order is recovered at zero temperature and spinons
become confined. The most interesting features of spin dynamics and transport
are exhibited at finite doping where exotic {\em residual} couplings between
spin and charge degrees of freedom lead to systematic anomalies with regard to
a Fermi-liquid system. In spin dynamics, a commensurate antiferromagnetic
fluctuation with a small, doping-dependent energy scale is found, which is
characterized in momentum space by a Gaussian peak at (, ) with
a doping-dependent width (, is the doping
concentration). This commensurate magnetic fluctuation contributes a
non-Korringa behavior for the NMR spin-lattice relaxation rate. There also
exits a characteristic temperature scale below which a pseudogap behavior
appears in the spin dynamics. Furthermore, an incommensurate magnetic
fluctuation is also obtained at a {\em finite} energy regime. In transport, a
strong short-range phase interference leads to an effective holon Lagrangian
which can give rise to a series of interesting phenomena including linear-
resistivity and Hall-angle. We discuss the striking similarities of these
theoretical features with those found in the high- cuprates and give aComment: 70 pages, RevTex, hard copies of 7 figures available upon request;
minor revisions in the text and references have been made; To be published in
July 1 issue of Phys. Rev. B52, (1995
Anisotropy studies around the galactic centre at EeV energies with the Auger Observatory
Data from the Pierre Auger Observatory are analyzed to search for
anisotropies near the direction of the Galactic Centre at EeV energies. The
exposure of the surface array in this part of the sky is already significantly
larger than that of the fore-runner experiments. Our results do not support
previous findings of localized excesses in the AGASA and SUGAR data. We set an
upper bound on a point-like flux of cosmic rays arriving from the Galactic
Centre which excludes several scenarios predicting sources of EeV neutrons from
Sagittarius . Also the events detected simultaneously by the surface and
fluorescence detectors (the `hybrid' data set), which have better pointing
accuracy but are less numerous than those of the surface array alone, do not
show any significant localized excess from this direction.Comment: Matches published versio
Modeling Translation in Protein Synthesis with TASEP: A Tutorial and Recent Developments
The phenomenon of protein synthesis has been modeled in terms of totally
asymmetric simple exclusion processes (TASEP) since 1968. In this article, we
provide a tutorial of the biological and mathematical aspects of this approach.
We also summarize several new results, concerned with limited resources in the
cell and simple estimates for the current (protein production rate) of a TASEP
with inhomogeneous hopping rates, reflecting the characteristics of real genes.Comment: 25 pages, 7 figure
Finite-time destruction of entanglement and non-locality by environmental influences
Entanglement and non-locality are non-classical global characteristics of
quantum states important to the foundations of quantum mechanics. Recent
investigations have shown that environmental noise, even when it is entirely
local in influence, can destroy both of these properties in finite time despite
giving rise to full quantum state decoherence only in the infinite time limit.
These investigations, which have been carried out in a range of theoretical and
experimental situations, are reviewed here.Comment: 27 pages, 6 figures, review article to appear in Foundations of
Physic
- …