163 research outputs found
Solid phase evolution in the Biosphere 2 hillslope experiment as predicted by modeling of hydrologic and geochemical fluxes
A reactive transport geochemical modeling study was conducted to help predict the mineral transformations occurring over a ten year time-scale that are expected to impact soil hydraulic properties in the Biosphere 2 (B2) synthetic hillslope experiment. The modeling sought to predict the rate and extent of weathering of a granular basalt (selected for hillslope construction) as a function of climatic drivers, and to assess the feedback effects of such weathering processes on the hydraulic properties of the hillslope. Flow vectors were imported from HYDRUS into a reactive transport code, CrunchFlow2007, which was then used to model mineral weathering coupled to reactive solute transport. Associated particle size evolution was translated into changes in saturated hydraulic conductivity using Rosetta software. We found that flow characteristics, including velocity and saturation, strongly influenced the predicted extent of incongruent mineral weathering and neo-phase precipitation on the hillslope. Results were also highly sensitive to specific surface areas of the soil media, consistent with surface reaction controls on dissolution. Effects of fluid flow on weathering resulted in significant differences in the prediction of soil particle size distributions, which should feedback to alter hillslope hydraulic conductivities
Recommended from our members
Final Report: Caustic Waste-Soil Weathering Reactions and Their Impacts on Trace Contaminant Migration and Sequestration
The principal goal of this project was to assess the molecular nature and stability of radionuclide (137-Cs, 90-Sr, and 129-I) immobilization during weathering reactions in bulk Hanford sediments and their high surface area clay mineral constituents. We focused on the unique aqueous geochemical conditions that are representative of waste-impacted locations in the Hanford site vadose zone: high ionic strength, high pH and high Al concentrations. The specific objectives of the work were to (i) measure the coupling of clay mineral weathering and contaminant uptake kinetics of Cs+, Sr2+ and I-; (ii) determine the molecular structure of contaminant binding sites and their change with weathering time during and after exposure to synthetic tank waste leachate (STWL); (iii) establish the stability of neoformed weathering products and their sequestered contaminants upon exposure of the solids to more “natural” soil solutions (i.e., after removal of the caustic waste source); and (iv) integrate macroscopic, microscopic and spectroscopic data to distinguish labile from non-labile contaminant binding environments, including their dependence on system composition and weathering time. During this funding period, we completed a large set of bench-scale collaborative experiments and product characterization aimed at elucidating the coupling between mineral transformation reactions and contaminant sequestration/stabilization. Our experiments included three representative Hanford sediments: course and fine sediments collected from the Hanford Formation and Ringold Silt, in addition to investigations with specimen clay minerals illite, vermiculite, smectite and kaolinite. These experiments combined macroscopic measurements of element release, contaminant uptake and subsequent neoformed mineral dissolution behavior, with detailed studies of solid phase products using SEM and TEM microscopy, NMR, XAS and FTIR spectroscopy. Our studies have shown direct coupling between mineral transformation reactions and contaminant sequestration/stabilization
Ecosystem-bedrock interaction changes nutrient compartmentalization during early oxidative weathering
Ecosystem-bedrock interactions power the biogeochemical cycles of Earth's
shallow crust, supporting life, stimulating substrate transformation, and
spurring evolutionary innovation. While oxidative processes have dominated half
of terrestrial history, the relative contribution of the biosphere and its
chemical fingerprints on Earth's developing regolith are still poorly
constrained. Here, we report results from a two-year incipient weathering
experiment. We found that the mass release and compartmentalization of major
elements during weathering of granite, rhyolite, schist and basalt was
rock-specific and regulated by ecosystem components.
A tight interplay between physiological needs of different biota, mineral
dissolution rates, and substrate nutrient availability resulted in intricate
elemental distribution patterns. Biota accelerated CO2 mineralization over
abiotic controls as ecosystem complexity increased, and significantly modified
stoichiometry of mobilized elements. Microbial and fungal components inhibited
element leaching (23.4% and 7%), while plants increased leaching and biomass
retention by 63.4%. All biota left comparable biosignatures in the dissolved
weathering products. Nevertheless, the magnitude and allocation of weathered
fractions under abiotic and biotic treatments provide quantitative evidence for
the role of major biosphere components in the evolution of upper continental
crust, presenting critical information for large-scale biogeochemical models
and for the search for stable in situ biosignatures beyond Earth.Comment: 41 pages (MS, SI and Data), 16 figures (MS and SI), 6 tables (SI and
Data). Journal article manuscrip
Recommended from our members
Sorptive fractionation of organic matter and formation of organo-hydroxy-aluminum complexes during litter biodegradation in the presence of gibbsite
Solid and aqueous phase Al species are recognized to affect organic matter (OM) stabilization in forest soils. However, little is known about the dynamics of formation, composition and dissolution of organo-Al hydroxide complexes in microbially-active soil systems, where plant litter is subject to microbial decomposition in close proximity to mineral weathering reactions. We incubated gibbsite-quartz mineral mixtures in the presence of forest floor material inoculated with a native microbial consortium for periods of 5, 60 and 154 days. At each time step, samples were density separated into light (2.0 g cm⁻³) fractions. The light fraction was mainly comprised of particulate organic matter, while the intermediate and heavy density fractions contained moderate and large amounts of Al-minerals, respectively. Multi-method interrogation of the fractions indicated the intermediate and heavy fractions differed both in mineral structure and organic compound composition. X-ray diffraction analysis and SEM/EDS of the mineral component of the intermediate fractions indicated some alteration of the original gibbsite structure into less crystalline Al hydroxide and possibly proto-imogolite species, whereas alteration of the gibbsite structure was not evident in the heavy fraction. DRIFT, Py-GC/MS and STXM/NEXAFS results all showed that intermediate fractions were composed mostly of lignin-derived compounds, phenolics, and polysaccharides. Heavy fraction organics were dominated by polysaccharides, and were enriched in proteins, N-bearing compounds, and lipids. The source of organics appeared to differ between the intermediate and heavy fractions. Heavy fractions were enriched in ¹³C with lower C/N ratios relative to intermediate fractions, suggesting a microbial origin. The observed differential fractionation of organics among hydroxy-Al mineral types suggests that microbial activity superimposed with abiotic mineral-surface-mediated fractionation leads to strong density differentiation of organo-mineral complex composition even over the short time scales probed in these incubation experiments. The data highlight the strong interdependency of mineral transformation, microbial community activity, and organic matter stabilization during biodegradation.Keywords: Chemical composition,
Drift spectroscopy,
Acid forest soils,
X-ray microscopy,
Diffuse reflectance,
Iron oxide,
goethite,
Carbon,
Humic acid,
Fulvic aci
Differential Effects of Arsenic in Drinking Water on Mouse Hepatic and Intestinal Heme Oxygenase-1 Expression
Arsenic exposure has been associated with the risks of various diseases, including cancers and metabolic diseases. The aim of this study was to examine the effects of arsenic exposure via drinking water on the expression of heme oxygenase-1 (HO-1), a major responsive gene to arsenic-induced oxidative stress, in mouse intestinal epithelial cells which is the first site of exposure for ingested arsenic, and the liver, a known target of arsenic toxicity. The expression of HO-1 was determined at mRNA, protein, or enzymic activity levels in mice exposed to sodium arsenite through drinking water, at various doses (0, 2.5, 10, 25, 100 ppm), and for various time periods (1, 3, 7, or 28 days). HO-1 was significantly induced in the intestine, but not liver, at arsenic doses of 25 ppm or lower. The intestinal HO-1 induction was seen in both males and females, plateaued within 1–3 days of exposure, and was accompanied by increases in microsomal HO activity. In mice exposed to 25-ppm of arsenite for 7 days, total arsenic and As(III) levels in intestinal epithelial cells were significantly higher than in the liver. These findings identify intestinal epithelial cells as likely preferential targets for arsenic toxicity and support further studies on the functional consequences of intestinal HO-1 induction. © 2022 by the authors.Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
Iron Addition to Soil Specifically Stabilized Lignin
The importance of lignin as a recalcitrant constituent of soil organic matter (SOM) remains contested. Associations with iron (Fe) oxides have been proposed to specifically protect lignin from decomposition, but impacts of Fe-lignin interactions on mineralization rates remain unclear. Oxygen (O2) fluctuations characteristic of humid tropical soils drive reductive Fe dissolution and precipitation, facilitating multiple types of Fe-lignin interactions that could variably decompose or protect lignin. We tested impacts of Fe addition on 13C methoxyl-labeled lignin mineralization in soils that were exposed to static or fluctuating O2. Iron addition suppressed lignin mineralization to 21% of controls, regardless of O2 availability. However, Fe addition had no effect on soil CO2 production, implying that Fe oxides specifically protected lignin methoxyls but not bulk SOM. Iron oxide-lignin interactions represent a specific mechanism for lignin stabilization, linking SOM biochemical composition to turnover via geochemistry
Hillslope-scale experiment demonstrates the role of convergence during two-step saturation
Subsurface flow and storage dynamics at hillslope scale are difficult to ascertain, often in part due to a lack of sufficient high-resolution measurements and an incomplete understanding of boundary conditions, soil properties, and other environmental aspects. A continuous and extreme rainfall experiment on an artificial hillslope at Biosphere 2's Landscape Evolution Observatory (LEO) resulted in saturation excess overland flow and gully erosion in the convergent hillslope area. An array of 496 soil moisture sensors revealed a two-step saturation process. First, the downward movement of the wetting front brought soils to a relatively constant but still unsaturated moisture content. Second, soils were brought to saturated conditions from below in response to rising water tables. Convergent areas responded faster than upslope areas, due to contributions from lateral subsurface flow driven by the topography of the bottom boundary, which is comparable to impermeable bedrock in natural environments. This led to the formation of a groundwater ridge in the convergent area, triggering saturation excess runoff generation. This unique experiment demonstrates, at very high spatial and temporal resolution, the role of convergence on subsurface storage and flow dynamics. The results bring into question the representation of saturation excess overland flow in conceptual rainfall-runoff models and land-surface models, since flow is gravity-driven in many of these models and upper layers cannot become saturated from below. The results also provide a baseline to study the role of the co-evolution of ecological and hydrological processes in determining landscape water dynamics during future experiments in LEO
Caesium incorporation and retention in illite interlayers
Radioactive caesium (chiefly 137Cs) is a major environmental pollutant. The mobility of Cs in temperate soils is primarily controlled by sorption onto clay minerals, particularly the frayed edges of illite interlayers. This paper investigates the adsorption of Cs to illite at the molecular scale, over both the short and long term. Transmission electron microscopy (TEM) images showed that after initial absorption into the frayed edges, Cs migrated into the illite interlayer becoming incorporated within the mineral structure. Caesium initially exchanged with hydrated Ca at the frayed edges, causing them to collapse. This process was irreversible as Cs held in the collapsed interlayers was not exchangeable with Ca. Over the long term Cs did not remain at the edge of the illite crystals, but diffused into the interlayers by exchange with K. Results from extended X-ray absorption fine structure spectroscopy (EXAFS) and density functional theory modelling confirmed that Cs was incorporated into the illite interlayer and revealed its bonding environment
- …