562 research outputs found

    Isotopic Investigation of Contemporary and Historic Changes in Penguin Trophic Niches and Carrying Capacity of the Southern Indian Ocean

    Get PDF
    A temperature-defined regime shift occurred in the 1970s in the southern Indian Ocean, with simultaneous severe decreases in many predator populations. We tested a possible biological link between the regime shift and predator declines by measuring historic and contemporary feather isotopic signatures of seven penguin species with contrasted foraging strategies and inhabiting a large latitudinal range. We first showed that contemporary penguin isotopic variations and chlorophyll a concentration were positively correlated, suggesting the usefulness of predator δ13C values to track temporal changes in the ecosystem carrying capacity and its associated coupling to consumers. Having controlled for the Suess effect and for increase CO2 in seawater, δ13C values of Antarctic penguins and of king penguins did not change over time, while δ13C of other subantarctic and subtropical species were lower in the 1970s. The data therefore suggest a decrease in ecosystem carrying capacity of the southern Indian Ocean during the temperature regime-shift in subtropical and subantarctic waters but not in the vicinity of the Polar Front and in southward high-Antarctic waters. The resulting lower secondary productivity could be the main driving force explaining the decline of subtropical and subantarctic (but not Antarctic) penguins that occurred in the 1970s. Feather δ15N values did not show a consistent temporal trend among species, suggesting no major change in penguins’ diet. This study highlights the usefulness of developing long-term tissue sampling and data bases on isotopic signature of key marine organisms to track potential changes in their isotopic niches and in the carrying capacity of the environment

    Current status of using beaks to identify cephalopods: III International Workshop and training course on Cephalopod beaks, Faial island, Azores, April 2007

    Get PDF
    The identification of cephalopods using their beaks is still a difficult technique. To increase our knowledge of this technique and stimulate a new generation of beak experts, the III International beak workshop and training course was organized in Faial, Azores Islands in 2007. We briefly review the activities of the workshop, including the identification procedure of lower beaks of cephalopods from predators with emphasis on cetaceans, seals, fish and seabirds; provision of basic knowledge to young researchers interested in the study area; identification of recent developments in beak research; and discussion of the main problematic issues. The families that need particular attention are Brachioteuthidae, Chiroteuthidae, Cranchiidae, Cycloteuthidae, Mastigoteuthidae, Octopoteuthidae, Promachoteuthidae, Onychoteuthidae (particularly the genus Walvisteuthis), Mastigoteuthidae and Cirroteuthidae. The stable isotopic signature of beaks is capable of revealing new trophic relationships and migrations. Future work should focus on: a) obtaining more cephalopod material from research cruises; b) promoting a close and continuous collaboration between beak experts and cephalopod taxonomists and; c) developing new, and updated, beak guides

    Topical niacinamide enhances hydrophobicity and resilience of corneocyte envelopes on different facial locations

    Get PDF
    Age-related differences in maturation parameters of corneocyte envelopes (size, hydrophobicity and rigidity) were examined at several facial test sites in young and old female Caucasians. In addition, the effect of topically applied niacinamide on these parameters was evaluated in a 4-week placebo-controlled study

    Future challenges in cephalopod research

    Get PDF
    We thank Anto´nio M. de Frias Martins, past President of the Unitas Malacologica and Peter Marko, President of the American Malacological Society for organizing the 2013 World Congress of Malacology, and the Cephalopod International Advisory Committee for endorsing a symposium held in honour of Malcolm R. Clarke. In particular, we would like to thank the many professional staff from the University of the Azores for their hospitality, organization, troubleshooting and warm welcome to the Azores. We also thank Malcolm Clarke’s widow, Dorothy, his daughter Zoe¨, Jose´ N. Gomes-Pereira and numerous colleagues and friends of Malcolm’s from around the world for joining us at Ponta Delgada. We are grateful to Lyndsey Claro (Princeton University Press) for granting copyright permissions.Peer reviewedPublisher PD

    Long-term species, sexual and individual variations in foraging strategies of fur seals revealed by stable isotopes in whiskers

    Get PDF
    Background: Individual variations in the use of the species niche are an important component of diversity in trophic interactions. A challenge in testing consistency of individual foraging strategy is the repeated collection of information on the same individuals. Methodology/Principal Findings: The foraging strategies of sympatric fur seals (Arctocephalus gazella and A. tropicalis) were examined using the stable isotope signature of serially sampled whiskers. Most whiskers exhibited synchronous delta C-13 and delta N-15 oscillations that correspond to the seal annual movements over the long term (up to 8 years). delta C-13 and delta N-15 values were spread over large ranges, with differences between species, sexes and individuals. The main segregating mechanism operates at the spatial scale. Most seals favored foraging in subantarctic waters (where the Crozet Islands are located) where they fed on myctophids. However, A. gazella dispersed in the Antarctic Zone and A. tropicalis more in the subtropics. Gender differences in annual time budget shape the seal movements. Males that do not perform any parental care exhibited large isotopic oscillations reflecting broad annual migrations, while isotopic values of females confined to a limited foraging range during lactation exhibited smaller changes. Limited inter-individual isotopic variations occurred in female seals and in male A. tropicalis. In contrast, male A. gazella showed large inter-individual variations, with some males migrating repeatedly to high-Antarctic waters where they fed on krill, thus meaning that individual specialization occurred over years. Conclusions/Significance: Whisker isotopic signature yields unique long-term information on individual behaviour that integrates the spatial, trophic and temporal dimensions of the ecological niche. The method allows depicting the entire realized niche of the species, including some of its less well-known components such as age-, sex-, individual- and migration-related changes. It highlights intrapopulation heterogeneity in foraging strategies that could have important implications for likely demographic responses to environmental variability

    Sequential Isotopic Signature Along Gladius Highlights Contrasted Individual Foraging Strategies of Jumbo Squid (Dosidicus gigas)

    Get PDF
    International audienceBackground: Cephalopods play a major role in marine ecosystems, but knowledge of their feeding ecology is limited. In particular, intra- and inter-individual variations in their use of resources has not been adequatly explored, although there is growing evidence that individual organisms can vary considerably in the way they use their habitats and resources. Methodology/Principal Findings: Using d13C and d15N values of serially sampled gladius (an archival tissue), we examined high resolution variations in the trophic niche of five large (.60 cm mantle length) jumbo squids (Dosidicus gigas) that were collected off the coast of Peru. We report the first evidence of large inter-individual differences in jumbo squid foraging strategies with no systematic increase of trophic level with size. Overall, gladius d13C values indicated one or several migrations through the squid's lifetime (,8-9 months), during which d15N values also fluctuated (range: 1 to 5%). One individual showed an unexpected terminal 4.6% d15N decrease (more than one trophic level), thus indicating a shift from higher- to lower-trophic level prey at that time. The data illustrate the high diversity of prey types and foraging histories of this species at the individual level. Conclusions/Significance: The isotopic signature of gladii proved to be a powerful tool to depict high resolution and ontogenic variations in individual foraging strategies of squids, thus complementing traditional information offered by stomach content analysis and stable isotopes on metabolically active tissues. The observed differences in life history strategies highlight the high degree of plasticity of the jumbo squid and its high potential to adapt to environmental changes

    Sexual niche segregation and gender-specific individual specialisation in a highly dimorphic marine mammal

    Full text link
    While sexual segregation is expected in highly dimorphic species, the local environment is a major factor driving the degree of resource partitioning within a population. Sexual and individual niche segregation was investigated in the Australian fur seal (Arctocephalus pusillus doriferus), which is a benthic foraging species restricted to the shallow continental shelf region of south-eastern Australia. Tracking data and the isotopic values of plasma, red blood cells and whiskers were combined to document spatial and dietary niche segregation throughout the year. Tracking data indicated that, in winter, males and females overlapped in their foraging habitat. All individuals stayed within central Bass Strait, relatively close (< 220 km) to the breeding colony. Accordingly, both genders exhibited similar plasma and red cell δ13C values. However, males exhibited greater δ13C intra-individual variation along the length of their whisker than females. This suggests that males exploited a greater diversity of foraging habitats throughout the year than their female counterparts, which are restricted in their foraging grounds by the need to regularly return to the breeding colony to suckle their pup. The degree of dietary sexual segregation was also surprisingly low, both sexes exhibiting a great overlap in their δ15N values. Yet, males displayed higher δ15N values than females, suggesting they fed upon a higher proportion of higher trophic level prey. Given that males and females exploit different resources (mainly foraging habitats), the degree of individual specialisation might differ between the sexes. Higher degrees of individual specialisation would be expected in males which exploit a greater range of resources. However, comparable levels of inter-individual variation in δ15N whisker values were found in the sampled males and females, and, surprisingly, all males exhibited similar seasonal and inter-annual variation in their δ13C whisker values, suggesting they all followed the same general dispersion pattern throughout the year

    Long-term changes in habitat and trophic level of Southern Ocean squid in relation to environmental conditions

    Get PDF
    Long-term studies of pelagic nekton in the Southern Ocean and their responses to ongoing environmental change are rare. Using stable isotope ratios measured in squid beaks recovered from diet samples of wandering albatrosses Diomedea exulans, we assessed decadal variation (from 1976 to 2016) in the habitat (δ13C) and trophic level (δ15N) of five important Southern Ocean squid species in relation to indices of environmental conditions—Southern Oscillation Index (SOI) and Southern Annular Mode (SAM). Based on δ13C values, corrected for the Suess effect, habitat had changed over the last 50 years for Taonius sp. B (Voss), Gonatus antarcticus, Galiteuthis glacialis and Histioteuthis atlantica but not Moroteuthopsis longimana. By comparison, mean δ15N values were similar across decades for all five species, suggesting minimal changes in trophic levels. Both SAM and SOI have increased in strength and frequency over the study period but, of the five species, only in Taonius sp. B (Voss) did these indices correlate with, δ13C and δ15N values, indicating direct relationships between environmental conditions, habitat and trophic level. The five cephalopod species therefore changed their habitats with changing environmental conditions over the last 50 years but maintained similar trophic levels. Hence, cephalopods are likely to remain important prey for top predators in Southern Ocean food webs, despite ongoing climate change

    Geographic variation in the trophic ecology of an avian rocky shore predator, the African black oystercatcher, along the southern African coastline

    Get PDF
    International audienceThe reflection of baseline isotopic signals along marine food chains up to higher trophic levels has been widely used in the study of oceanic top predators but rarely for intertidal predators. We investigated variation in the δ13C and δ15N ratios of a sedentary, rocky shore predator, the African black oystercatcher Haematopus moquini, over ~2000 km of the southern African coastline, which is characterized by strong biogeographic patterns in primary productivity and intertidal communities. Blood and feathers from breeding adults and chicks and muscle tissues from primary prey items (mussels and limpets) were sampled between southern Namibia and the southeast coast of South Africa. 15N enrichment was observed between the southeast and west coasts in oystercatcher tissues and their prey, mirroring an isotope shift between the oligotrophic Agulhas Current on the east coast and the eutrophic Benguela upwelling system on the west coast. Oystercatcher blood showed δ13C values that varied between those of the carbon-depleted mussels and the carbon-enriched limpets along the coastline, which reflected changes in the proportion of grazers and filter feeders in the oystercatcher diet across the sampling range. The geographic shift in diet, dominated by mussels on the west coast and composed of mixed proportions of mussels and limpets on the southeast coasts, strongly reflected regionally high abundances of the invasive Mediterranean mussel Mytilus galloprovincialis. Finally, isotope signatures of blood and feathers displayed a strong correlation throughout the study area, indicating seasonal stability in environmental conditions and feeding habits of the adults. There were, however, local discrepancies on the south coast that indicated movement of adults occurred outside the breeding season possibly in response to a lower abundance of food in this region. Overall, the results indicate that the influence of regional oceanic conditions on the base of the food web can penetrate to the predator level, but that local effects can be incorporated within this pattern
    corecore