325 research outputs found

    Influence of salinity on SAV distribution in a series of intermittently connected coastal lakes

    Get PDF
    Intermittently closed and open lakes and lagoons (ICOLLs) are coastal lakes that intermittently exchange water with the sea and experience saline intrusions. Understanding effects of seawater exchange on local biota is important to preserve ecosystem functioning and ecological integrity. Coastal dune lakes of northwest Florida are an understudied group of ICOLLs in close geographic proximity and with entrance regimes operating along a frequency continuum. We exploited this natural continuum and corresponding water chemistry gradient to determine effects of water chemistry on resident submersed aquatic vegetation (SAV) distributions in these ecosystems. SAV distribution decreased with increases in salinity, but was unaffected by variation in nitrogen, phosphorous, and turbidity. Salinity perturbations corresponding with water exchange with the Gulf of Mexico were associated with reductions in SAV in coastal dune lakes. Potential impacts associated with changes in global climate may increase the frequency of seawater exchange across all coastal dune lakes and potentially reduce the distribution of oligohaline macrophytes among these ecosystems

    In situ crosslinking bionanocomposite hydrogels with potential for wound healing applications

    Get PDF
    In situ forming hydrogels are a class of biomaterials that can fulfil a variety of important biomedically relevant functions and hold promise for the emerging field of patient-specific treatments (e.g., cell therapy, drug delivery). Here we report the results of our investigations on the generation of in situ forming hydrogels with potential for wound healing applications (e.g., complex blast injuries). The combination of polysaccharides that were oxidized to display aldehydes, amine displaying chitosan and nanostructured ZnO yields in situ forming bionanocomposite hydrogels. The physicochemical properties of the components, their cytotoxicity towards HaCat cells and the in vitro release of zinc ions on synthetic skin were studied. The in situ gel formation process was complete within minutes, the components were non-toxic towards HaCat cells at functional levels, Zn2+ was released from the gels, and such materials may facilitate wound healing

    Functional analyses of <i>Agaricus bisporus </i>Serine Proteinase 1 (SPR1) reveals a role in utilisation of humic rich substrates and adaptation to the leaf-litter ecological niche

    Get PDF
    Agaricus bisporus is a secondary decomposer fungus and an excellent model for the adaptation, persistence and growth of fungi in humic‐rich environments such as soils of temperate woodland and pastures. The A. bisporus serine proteinase SPR1 is induced by humic acids and is highly expressed during growth on compost. Three Spr1 gene silencing cassettes were constructed around sense, antisense and non‐translatable‐stop strategies (pGRsensehph, pGRantihph and pGRstophph). Transformation of A. bisporus with these cassettes generated cultures showing a reduction in extracellular proteinase activity as demonstrated by the reduction, or abolition, of a clearing zone on plate‐based bioassays. These lines were then assessed by detailed enzyme assay, RT‐qPCR and fruiting. Serine proteinase activity in liquid cultures was reduced in 83% of transformants. RT‐qPCR showed reduced Spr1 mRNA levels in all transformants analysed, and these correlated with reduced enzyme activity. When fruiting was induced, highly‐silenced transformant AS5 failed to colonize the compost, whilst for those that did colonize the compost, 60% gave a reduction in mushroom yield. Transcriptional, biochemical and developmental observations, demonstrate that SPR1 has an important role in nutrient acquisition in compost and that SPR1 is a key enzyme in the adaptation of Agaricus to the humic‐rich ecological niche formed during biomass degradation

    Pevonedistat targets malignant cells in myeloproliferative neoplasms in vitro and in vivo via NFÎșB pathway inhibition

    Get PDF
    Targeted inhibitors of JAK2 (eg ruxolitinib) often provide symptomatic relief for myeloproliferative neoplasm (MPN) patients, but the malignant clone persists and remains susceptible to disease transformation. These observations suggest that targeting alternative dysregulated signaling pathways may provide therapeutic benefit. Previous studies identified NFÎșB pathway hyperactivation in myelofibrosis (MF) and secondary acute myeloid leukemia (sAML) that was insensitive to JAK2 inhibition. Here, we provide evidence that NFÎșB pathway inhibition via pevonedistat targets malignant cells in MPN patient samples as well as in MPN and patient-derived xenograft mouse models that are nonredundant with ruxolitinib. Colony forming assays revealed preferential inhibition of MF colony growth compared with normal colony formation. In mass cytometry studies, pevonedistat blunted canonical TNFα responses in MF and sAML patient CD34+ cells. Pevonedistat also inhibited hyperproduction of inflammatory cytokines more effectively than ruxolitinib. Upon pevonedistat treatment alone or in combination with ruxolitinib, MPN mouse models exhibited reduced disease burden and improved survival. These studies demonstrating efficacy of pevonedistat in MPN cells in vitro as well as in vivo provide a rationale for therapeutic inhibition of NFÎșB signaling for MF treatment. Based on these findings, a Phase 1 clinical trial combining pevonedistat with ruxolitinib has been initiated

    Managing water scarcity at a river basin scale with economic instruments

    Get PDF
    This paper presents a conceptual framework for both assessing the role of economic instruments, and reshaping them in order to enhance their contribution to the goals of managing water scarcity. Water management problems stem from the mismatch between a multitude of individual decisions, on the one hand, and the current and projected status of water resources on the other. Economics can provide valuable incentives that drive individual decisions, and can design efficient instruments to address water governance problems in a context of conflicting interests and relevant transaction costs. Yet, instruments such as water pricing or trading are mostly based on general principles of welfare economics that are not readily applicable to assets as complex as water. A flaw in welfare economic approaches lies in the presumption that economic instruments may be good orbad on their own (e.g., finding the "right" price). This vision changes radically when we focus on the problem, instead of the instrument. In this paper, we examine how economic instruments to achieve welfare-enhancing water resource outcomes can realize their full potential in basin-scale management contexts. We follow a political economy perspective that views conflicts between public and private interest as the main instrumental challenge of water management. Our analysis allows us to better understand the critical importance of economic instruments for reconciling individual actions towards collective ambitions of water efficiency, equity and sustainability with lessons for later-adopting jurisdictions. Rather than providing panaceas, the successful design and implementation of economic instruments as key river basin management arrangements involves high transaction costs, wide institutional changes and collective action at different levels

    Preparedness of emergency departments in northwest England for managing chemical incidents: a structured interview survey

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A number of significant chemical incidents occur in the UK each year and may require Emergency Departments (EDs) to receive and manage contaminated casualties. Previously UK EDs have been found to be under-prepared for this, but since October 2005 acute hospital Trusts have had a statutory responsibility to maintain decontamination capacity. We aimed to evaluate the level of preparedness of Emergency Departments in North West England for managing chemical incidents.</p> <p>Methods</p> <p>A face-to-face semi-structured interview was carried out with the Nurse Manager or a nominated deputy in all 18 Emergency Departments in the Region.</p> <p>Results</p> <p>16/18 departments had a written chemical incident plan but only 7 had the plan available at interview. All had a designated decontamination area but only 11 felt that they were adequately equipped. 12/18 had a current training programme for chemical incident management and 3 had no staff trained in decontamination. 13/18 could contain contaminated water from casualty decontamination and 6 could provide shelter for casualties before decontamination.</p> <p>Conclusion</p> <p>We have identified major inconsistencies in the preparedness of North West Emergency Departments for managing chemical incidents. Nationally recognized standards on incident planning, facilities, equipment and procedures need to be agreed and implemented with adequate resources. Issues of environmental safety and patient dignity and comfort should also be addressed.</p

    IRAK4 mediates colitis-induced tumorigenesis and chemoresistance in colorectal cancer

    Get PDF
    Aberrant activation of the NF-ÎșB transcription factors underlies chemoresistance in various cancer types, including colorectal cancer (CRC). Targeting the activating mechanisms, particularly with inhibitors to the upstream IÎșB kinase (IKK) complex, is a promising strategy to augment the effect of chemotherapy. However, clinical success has been limited, largely because of low specificity and toxicities of tested compounds. In solid cancers, the IKKs are driven predominantly by the Toll-like receptor (TLR)/IL-1 receptor family members, which signal through the IL-1 receptor-associated kinases (IRAKs), with isoform 4 (IRAK4) being the most critical. The pathogenic role and therapeutic value of IRAK4 in CRC have not been investigated. We found that IRAK4 inhibition significantly abrogates colitis-induced neoplasm in APCMin/+ mice, and bone marrow transplant experiments showed an essential role of IRAK4 in immune cells during neoplastic progression. Chemotherapy significantly enhances IRAK4 and NF-ÎșB activity in CRC cells through upregulating TLR9 expression, which can in turn be suppressed by IRAK4 and IKK inhibitors, suggesting a feed-forward pathway that protects CRC cells from chemotherapy. Lastly, increased tumor phospho-IRAK4 staining or IRAK4 mRNA expression is associated with significantly worse survival in CRC patients. Our results support targeting IRAK4 to improve the effects of chemotherapy and outcomes in CRC

    Genome sequence of the button mushroom Agaricus bisporus reveals mechanisms governing adaptation to a humic-rich ecological niche

    Get PDF
    Agaricus bisporus is the model fungus for the adaptation, persistence, and growth in the humic-rich leaf-litter environment. Aside from its ecological role, A. bisporus has been an important component of the human diet for over 200 y and worldwide cultivation of the "button mushroom" forms a multibillion dollar industry. We present two A. bisporus genomes, their gene repertoires and transcript profiles on compost andduringmushroomformation.The genomes encode a full repertoire of polysaccharide-degrading enzymes similar to that of wood-decayers. Comparative transcriptomics of mycelium grown on defined medium, casing-soil, and compost revealed genes encoding enzymes involved in xylan, cellulose, pectin, and protein degradation aremore highly expressed in compost. The striking expansion of heme-thiolate peroxidases and ÎČ-etherases is distinctive from Agaricomycotina wood-decayers and suggests a broad attack on decaying lignin and related metabolites found in humic acid-rich environment. Similarly, up-regulation of these genes together with a lignolytic manganese peroxidase, multiple copper radical oxidases, and cytochrome P450s is consistent with challenges posed by complex humic-rich substrates. The gene repertoire and expression of hydrolytic enzymes in A. bisporus is substantially different from the taxonomically related ectomycorrhizal symbiont Laccaria bicolor. A common promoter motif was also identified in genes very highly expressed in humic-rich substrates. These observations reveal genetic and enzymatic mechanisms governing adaptation to the humic-rich ecological niche formed during plant degradation, further defining the critical role such fungi contribute to soil structure and carbon sequestration in terrestrial ecosystems. Genome sequence will expedite mushroom breeding for improved agronomic characteristics

    The ethics of digital well-being: a multidisciplinary perspective

    Get PDF
    This chapter serves as an introduction to the edited collection of the same name, which includes chapters that explore digital well-being from a range of disciplinary perspectives, including philosophy, psychology, economics, health care, and education. The purpose of this introductory chapter is to provide a short primer on the different disciplinary approaches to the study of well-being. To supplement this primer, we also invited key experts from several disciplines—philosophy, psychology, public policy, and health care—to share their thoughts on what they believe are the most important open questions and ethical issues for the multi-disciplinary study of digital well-being. We also introduce and discuss several themes that we believe will be fundamental to the ongoing study of digital well-being: digital gratitude, automated interventions, and sustainable co-well-being

    Post-exertion oxygen saturation as a prognostic factor for adverse outcome in patients attending the emergency department with suspected COVID-19 : observational cohort study

    Get PDF
    Background Measurement of post-exertion oxygen saturation has been proposed to assess illness severity in suspected COVID-19 infection. We aimed to determine the accuracy of post-exertional oxygen saturation for predicting adverse outcome in suspected COVID-19. Methods We undertook an observational cohort study across 70 emergency departments during first wave of the COVID-19 pandemic in the United Kingdom. We collected data prospectively, using a standardised assessment form, and retrospectively, using hospital records, from patients with suspected COVID-19, and reviewed hospital records at 30 days for adverse outcome (death or receiving organ support). Patients with post-exertion oxygen saturation recorded were selected for this analysis. Results We analysed data from 817 patients with post-exertion oxygen saturation recorded after excluding 54 in whom measurement appeared unfeasible. The c-statistic for post-exertion change in oxygen saturation was 0.589 (95% confidence interval 0.465 to 0.713), and the positive and negative likelihood ratios of a 3% or more desaturation were respectively 1.78 (1.25 to 2.53) and 0.67 (0.46 to 0.98). Multivariable analysis showed that post-exertion oxygen saturation was not a significant predictor of adverse outcome when baseline clinical assessment was taken into account (p=0.368). Secondary analysis excluding patients in whom post-exertion measurement appeared inappropriate resulted in a c-statistic of 0.699 (0.581 to 0.817), likelihood ratios of 1.98 (1.26 to 3.10) and 0.61 (0.35 to 1.07), and some evidence of additional prognostic value on multivariable analysis (p=0.019). Conclusions Post-exertion oxygen saturation provides modest prognostic information in the assessment of patients attending the emergency department with suspected COVID-19
    • 

    corecore