79 research outputs found
Caractérisation structurale et fonctionnelle d'une lectine de type-C des cellules de Langerhans (La Langérine)
Les cellules dendritiques jouent un rôle primordial dans le système immunitaire. En effet, ces cellules sont à l'interface entre l'immunité innée et adaptative par leur capacité de reconnaissance, d'internalisation et de dégradation de pathogènes afin de présenter des antigènes aux lymphocytes. La capacité de reconnaissance est engendrée par l'expression de différents récepteurs à la surface de ces cellules. Parmi ces récepteurs, deux grandes familles permettent la reconnaissance d'un large panel de différents pathogènes, comme les TLRs ( Toll-Like Receptors) et les lectines de type-C. Ces récepteurs sont utilisés comme marqueurs des différents sous-types de cellules dendritiques. Par exemple, parmi les lectines de type-C, DC-SIGN est majoritairement exprimée dans les cellules dendritiques dermiques alors que la Langérine est, quand à elle, fortement exprimée par les cellules dendritiques épidermiques, les cellules de Langerhans. Ces deux sous-types de cellules dendritiques divergent par leur réponse à l'infection par le VIH ( virus d'immunodéficience humain ). En effet, le virus utilise DC-SIGN pour détourner le rôle de ces cellules afin d'infecter les lymphocytes T alors que la reconnaissance du VIH par la Langérine, dans les cellules de Langerhans, conduit à la clairance de virus par son internalisation dans le granule de Birbeck. Cet organite est spécifique des cellules de Langerhans et nécessite l'expression de la Langérine. Ce travail de thèse s'est donc focalisé sur la caractérisation structurale et fonctionnelle de la Langérine. Il a permis de mettre en évidence l'importance de la structure tertiaire du domaine CRD et de la structure quaternaire de la protéine pour la formation et la bonne structuration du granule de Birbeck. Ensuite, l'étude fonctionnelle de cette lectine, notamment par résonance plasmonique de surface, nous a conduit à identifier une nouvelle spécificité de reconnaissance de la Langérine pour les glycosaminoglycanes dans un site d'interaction différent du site canonique. Enfin, nous avons caractérisé une spécificité de reconnaissance du site canonique pour les monosaccharides sulfatés de type glucosamine en utilisant la résonance plasmonique de surface et la cristallographie.Dendritic cells play a crucial role in the immune system. Indeed, these cells are at the interface between innate and acquired immunity by their capacities of recognition, internalisation and pathogen degradation to present antigens to T lymphocytes. The recognition capacity is generated by the expression of diverse receptors onto the cell surface. Among these receptors, two large families allow the recognition of a large panel of different pathogens, as TLRs ( Toll-Like Receptor) and C-type lectins. These receptors are used as markers of different dendritic cells subtypes. For example, and among the C-type lectins, DC-SIGN is mainly expressed onto dermic dendritic cells contrary to langerin, which is highly expressed onto epidermic dendritic cells, called Langerhans cells. These two subtypes of dendritic cells differ in their response of HIV infection. Indeed, the virus recognition by DC-SIGN enables hijacking the dendritic cell to infect T lymphocyte contrary to langerin recognition, in Langerhans cells, which allows the clearance of the virus by its internalisation into Birbeck granules. This organite is specific of Langerhans cells and requires langerin expression. This work is focused on structural and functional characterisation of langerin. It highlights the importance of the CRD tertiary structure and the quaternary structure of the protein for the formation and the structure of Birbeck granules. Then, functional study by surface plasmon resonance enabled us to identify a new binding site of langerin for glycosaminoglycans. Finally, we have characterised a recognition specificity of langerin for sulphated monosaccharide of glucosamine type using surface plasmon resonance and crystallography.SAVOIE-SCD - Bib.électronique (730659901) / SudocGRENOBLE1/INP-Bib.électronique (384210012) / SudocGRENOBLE2/3-Bib.électronique (384219901) / SudocSudocFranceF
Langerin-Heparin Interaction: Two Binding Sites for Small and Large Ligands as revealed by a combination of NMR Spectroscopy and Cross-Linking Mapping Experiments
Langerin is a C-type lectin present on Langerhans cells that mediates capture of pathogens in a carbohydrate-dependent manner, leading to subsequent internalization and elimination in the cellular organelles called Birbeck granules. This mechanism mediated by langerin was shown to constitute a natural barrier for HIV-1 particle transmission. Besides interacting specifically with high mannose and fucosylated neutral carbohydrate structures, langerin has the ability to bind sulfated carbohydrate ligands as 6-sulfated galactosides in the Ca2+ dependent binding site. Very recently langerin was demonstrated to interact with sulfated glycosaminoglycans (GAGs), in a Ca2+ independent way, resulting in the proposal of a new binding site for GAGs. Based on those results, we have conducted a structural study of the interactions of small heparin (HEP) like oligosaccharides with langerin in solution. Heparin-bead cross-linking experiments, an approach specifically designed to identify HEP/HS binding sites in proteins were first carried out and experimentally validated the previously proposed model for the interaction of Lg ECD with 6 kDa HEP. High-resolution NMR studies of a set of 8 synthetic HEP-like trisaccharides harboring different sulfation patterns demonstrated that all of them bound to langerin in a Ca2+ dependent way. The binding epitopes were determined by STD NMR and the bound conformations by transferred NOESY experiments. These experimental data were combined with docking and molecular dynamics and resulted in the proposal of a binding mode characterized by the coordination of calcium by the two equatorial hydroxyl groups OH3 and OH4 at the non-reducing end. The binding also includes the carboxylate group at the adjacent iduronate residue. Such epitope is shared by all the 8 ligands, explaining the absence of any impact on binding from their differences in substitution pattern. Finally, in contrast to the small trisaccharides, we demonstrated that a longer HEP-like hexasaccharide, bearing an additional O-sulfate group at the non-reducing end, which precludes binding to the Ca2+ site, interacts with langerin in the previously identified Ca2+ independent binding site
Exhaustive analysis of BH4 and dopamine biosynthesis genes in patients with Dopa-responsive dystonia
Dopa-responsive dystonia is a childhood-onset dystonic disorder, characterized by a dramatic response to low dose of l-Dopa. Dopa-responsive dystonia is mostly caused by autosomal dominant mutations in the GCH1 gene (GTP cyclohydrolase1) and more rarely by autosomal recessive mutations in the TH (tyrosine hydroxylase) or SPR (sepiapterin reductase) genes. In addition, mutations in the PARK2 gene (parkin) which causes autosomal recessive juvenile parkinsonism may present as Dopa-responsive dystonia. In order to evaluate the relative frequency of the mutations in these genes, but also in the genes involved in the biosynthesis and recycling of BH4, and to evaluate the associated clinical spectrum, we have studied a large series of index patients (n = 64) with Dopa-responsive dystonia, in whom dystonia improved by at least 50% after l-Dopa treatment. Fifty seven of these patients were classified as pure Dopa-responsive dystonia and seven as Dopa-responsive dystonia-plus syndromes. All patients were screened for point mutations and large rearrangements in the GCH1 gene, followed by sequencing of the TH and SPR genes, then PTS (pyruvoyl tetrahydropterin synthase), PCBD (pterin-4a-carbinolamine dehydratase), QDPR (dihydropteridin reductase) and PARK2 (parkin) genes. We identified 34 different heterozygous point mutations in 40 patients, and six different large deletions in seven patients in the GCH1 gene. Except for one patient with mental retardation and a large deletion of 2.3 Mb encompassing 10 genes, all patients had stereotyped clinical features, characterized by pure Dopa-responsive dystonia with onset in the lower limbs and an excellent response to low doses of l-Dopa. Dystonia started in the first decade of life in 40 patients (85%) and before the age of 1 year in one patient (2.2%). Three of the 17 negative GCH1 patients had mutations in the TH gene, two in the SPR gene and one in the PARK2 gene. No mutations in the three genes involved in the biosynthesis and recycling of BH4 were identified. The clinical presentations of patients with mutations in TH and SPR genes were strikingly more complex, characterized by mental retardation, oculogyric crises and parkinsonism and they were all classified as Dopa-responsive dystonia-plus syndromes. Patient with mutation in the PARK2 gene had Dopa-responsive dystonia with a good improvement with l-Dopa, similar to Dopa-responsive dystonia secondary to GCH1 mutations. Although the yield of mutations exceeds 80% in pure Dopa-responsive dystonia and Dopa-responsive dystonia-plus syndromes groups, the genes involved are clearly different: GCH1 in the former and TH and SPR in the late
Caractérisation structurale et fonctionnelle d'une lectine de type-C des cellules de Langerhans : La Langérine
Dendritic cells play a crucial role in the immune system. Indeed, these cells are at the interface between innate and acquired immunity by their capacities of recognition, internalisation and pathogen degradation to present antigens to T lymphocytes. The recognition capacity is generated by the expression of diverse receptors onto the cell surface. Among these receptors, two large families allow the recognition of a large panel of different pathogens, as TLRs (“Toll-Like Receptor) and C-type lectins. These receptors are used as markers of different dendritic cells subtypes. For example, and among the C-type lectins, DC-SIGN is mainly expressed onto dermic dendritic cells contrary to langerin, which is highly expressed onto epidermic dendritic cells, called Langerhans cells. These two subtypes of dendritic cells differ in their response of HIV infection. Indeed, the virus recognition by DC-SIGN enables hijacking the dendritic cell to infect T lymphocyte contrary to langerin recognition, in Langerhans cells, which allows the clearance of the virus by its internalisation into Birbeck granules. This organite is specific of Langerhans cells and requires langerin expression. This work is focused on structural and functional characterisation of langerin. It highlights the importance of the CRD tertiary structure and the quaternary structure of the protein for the formation and the structure of Birbeck granules. Then, functional study by surface plasmon resonance enabled us to identify a new binding site of langerin for glycosaminoglycans. Finally, we have characterised a recognition specificity of langerin for sulphated monosaccharide of glucosamine type using surface plasmon resonance and crystallography.Les cellules dendritiques jouent un rôle primordial dans le système immunitaire. En effet, ces cellules sont à l'interface entre l'immunité innée et adaptative par leur capacité de reconnaissance, d'internalisation et de dégradation de pathogènes afin de présenter des antigènes aux lymphocytes. La capacité de reconnaissance est engendrée par l'expression de différents récepteurs à la surface de ces cellules. Parmi ces récepteurs, deux grandes familles permettent la reconnaissance d'un large panel de différents pathogènes, comme les TLRs (« Toll-Like Receptors) et les lectines de type-C. Ces récepteurs sont utilisés comme marqueurs des différents sous-types de cellules dendritiques. Par exemple, parmi les lectines de type-C, DC-SIGN est majoritairement exprimée dans les cellules dendritiques dermiques alors que la Langérine est, quand à elle, fortement exprimée par les cellules dendritiques épidermiques, les cellules de Langerhans. Ces deux sous-types de cellules dendritiques divergent par leur réponse à l'infection par le VIH (« virus d'immunodéficience humain »). En effet, le virus utilise DC-SIGN pour détourner le rôle de ces cellules afin d'infecter les lymphocytes T alors que la reconnaissance du VIH par la Langérine, dans les cellules de Langerhans, conduit à la clairance de virus par son internalisation dans le granule de Birbeck. Cet organite est spécifique des cellules de Langerhans et nécessite l'expression de la Langérine. Ce travail de thèse s'est donc focalisé sur la caractérisation structurale et fonctionnelle de la Langérine. Il a permis de mettre en évidence l'importance de la structure tertiaire du domaine CRD et de la structure quaternaire de la protéine pour la formation et la bonne structuration du granule de Birbeck. Ensuite, l'étude fonctionnelle de cette lectine, notamment par résonance plasmonique de surface, nous a conduit à identifier une nouvelle spécificité de reconnaissance de la Langérine pour les glycosaminoglycanes dans un site d'interaction différent du site canonique. Enfin, nous avons caractérisé une spécificité de reconnaissance du site canonique pour les monosaccharides sulfatés de type glucosamine en utilisant la résonance plasmonique de surface et la cristallographie
Caractérisation structurale et fonctionnelle d'une lectine de type-C des cellules de Langerhans : La Langérine
Dendritic cells play a crucial role in the immune system. Indeed, these cells are at the interface between innate and acquired immunity by their capacities of recognition, internalisation and pathogen degradation to present antigens to T lymphocytes. The recognition capacity is generated by the expression of diverse receptors onto the cell surface. Among these receptors, two large families allow the recognition of a large panel of different pathogens, as TLRs (“Toll-Like Receptor) and C-type lectins. These receptors are used as markers of different dendritic cells subtypes. For example, and among the C-type lectins, DC-SIGN is mainly expressed onto dermic dendritic cells contrary to langerin, which is highly expressed onto epidermic dendritic cells, called Langerhans cells. These two subtypes of dendritic cells differ in their response of HIV infection. Indeed, the virus recognition by DC-SIGN enables hijacking the dendritic cell to infect T lymphocyte contrary to langerin recognition, in Langerhans cells, which allows the clearance of the virus by its internalisation into Birbeck granules. This organite is specific of Langerhans cells and requires langerin expression. This work is focused on structural and functional characterisation of langerin. It highlights the importance of the CRD tertiary structure and the quaternary structure of the protein for the formation and the structure of Birbeck granules. Then, functional study by surface plasmon resonance enabled us to identify a new binding site of langerin for glycosaminoglycans. Finally, we have characterised a recognition specificity of langerin for sulphated monosaccharide of glucosamine type using surface plasmon resonance and crystallography.Les cellules dendritiques jouent un rôle primordial dans le système immunitaire. En effet, ces cellules sont à l'interface entre l'immunité innée et adaptative par leur capacité de reconnaissance, d'internalisation et de dégradation de pathogènes afin de présenter des antigènes aux lymphocytes. La capacité de reconnaissance est engendrée par l'expression de différents récepteurs à la surface de ces cellules. Parmi ces récepteurs, deux grandes familles permettent la reconnaissance d'un large panel de différents pathogènes, comme les TLRs (« Toll-Like Receptors) et les lectines de type-C. Ces récepteurs sont utilisés comme marqueurs des différents sous-types de cellules dendritiques. Par exemple, parmi les lectines de type-C, DC-SIGN est majoritairement exprimée dans les cellules dendritiques dermiques alors que la Langérine est, quand à elle, fortement exprimée par les cellules dendritiques épidermiques, les cellules de Langerhans. Ces deux sous-types de cellules dendritiques divergent par leur réponse à l'infection par le VIH (« virus d'immunodéficience humain »). En effet, le virus utilise DC-SIGN pour détourner le rôle de ces cellules afin d'infecter les lymphocytes T alors que la reconnaissance du VIH par la Langérine, dans les cellules de Langerhans, conduit à la clairance de virus par son internalisation dans le granule de Birbeck. Cet organite est spécifique des cellules de Langerhans et nécessite l'expression de la Langérine. Ce travail de thèse s'est donc focalisé sur la caractérisation structurale et fonctionnelle de la Langérine. Il a permis de mettre en évidence l'importance de la structure tertiaire du domaine CRD et de la structure quaternaire de la protéine pour la formation et la bonne structuration du granule de Birbeck. Ensuite, l'étude fonctionnelle de cette lectine, notamment par résonance plasmonique de surface, nous a conduit à identifier une nouvelle spécificité de reconnaissance de la Langérine pour les glycosaminoglycanes dans un site d'interaction différent du site canonique. Enfin, nous avons caractérisé une spécificité de reconnaissance du site canonique pour les monosaccharides sulfatés de type glucosamine en utilisant la résonance plasmonique de surface et la cristallographie
Structural and functional characterization of Langerin : lectin receptor of Langerhans cells
Les cellules dendritiques jouent un rôle primordial dans le système immunitaire. En effet, ces cellules sont à l'interface entre l'immunité innée et adaptative par leur capacité de reconnaissance, d'internalisation et de dégradation de pathogènes afin de présenter des antigènes aux lymphocytes. La capacité de reconnaissance est engendrée par l'expression de différents récepteurs à la surface de ces cellules. Parmi ces récepteurs, deux grandes familles permettent la reconnaissance d'un large panel de différents pathogènes, comme les TLRs (« Toll-Like Receptors) et les lectines de type-C. Ces récepteurs sont utilisés comme marqueurs des différents sous-types de cellules dendritiques. Par exemple, parmi les lectines de type-C, DC-SIGN est majoritairement exprimée dans les cellules dendritiques dermiques alors que la Langérine est, quand à elle, fortement exprimée par les cellules dendritiques épidermiques, les cellules de Langerhans. Ces deux sous-types de cellules dendritiques divergent par leur réponse à l'infection par le VIH (« virus d'immunodéficience humain »). En effet, le virus utilise DC-SIGN pour détourner le rôle de ces cellules afin d'infecter les lymphocytes T alors que la reconnaissance du VIH par la Langérine, dans les cellules de Langerhans, conduit à la clairance de virus par son internalisation dans le granule de Birbeck. Cet organite est spécifique des cellules de Langerhans et nécessite l'expression de la Langérine. Ce travail de thèse s'est donc focalisé sur la caractérisation structurale et fonctionnelle de la Langérine. Il a permis de mettre en évidence l'importance de la structure tertiaire du domaine CRD et de la structure quaternaire de la protéine pour la formation et la bonne structuration du granule de Birbeck. Ensuite, l'étude fonctionnelle de cette lectine, notamment par résonance plasmonique de surface, nous a conduit à identifier une nouvelle spécificité de reconnaissance de la Langérine pour les glycosaminoglycanes dans un site d'interaction différent du site canonique. Enfin, nous avons caractérisé une spécificité de reconnaissance du site canonique pour les monosaccharides sulfatés de type glucosamine en utilisant la résonance plasmonique de surface et la cristallographie.Dendritic cells play a crucial role in the immune system. Indeed, these cells are at the interface between innate and acquired immunity by their capacities of recognition, internalisation and pathogen degradation to present antigens to T lymphocytes. The recognition capacity is generated by the expression of diverse receptors onto the cell surface. Among these receptors, two large families allow the recognition of a large panel of different pathogens, as TLRs (“Toll-Like Receptor) and C-type lectins. These receptors are used as markers of different dendritic cells subtypes. For example, and among the C-type lectins, DC-SIGN is mainly expressed onto dermic dendritic cells contrary to langerin, which is highly expressed onto epidermic dendritic cells, called Langerhans cells. These two subtypes of dendritic cells differ in their response of HIV infection. Indeed, the virus recognition by DC-SIGN enables hijacking the dendritic cell to infect T lymphocyte contrary to langerin recognition, in Langerhans cells, which allows the clearance of the virus by its internalisation into Birbeck granules. This organite is specific of Langerhans cells and requires langerin expression. This work is focused on structural and functional characterisation of langerin. It highlights the importance of the CRD tertiary structure and the quaternary structure of the protein for the formation and the structure of Birbeck granules. Then, functional study by surface plasmon resonance enabled us to identify a new binding site of langerin for glycosaminoglycans. Finally, we have characterised a recognition specificity of langerin for sulphated monosaccharide of glucosamine type using surface plasmon resonance and crystallography
Landscape and settlement process in al-Kharj oasis (province of Riyadh)
International audienceThis paper confronts the proto-historical and historical settlement pattern in al-Kharj oasis (Central Arabia) with the environmental context by taking into account the results of the recent fieldwork. By superimposing an archaeological map of the oasis on the geomorphological map, different settlement strategies appear at different period of time. During the Bronze and Iron Ages, the location of the sites – mostly necropolises – is dictated by the geological, topographic and hydrological contexts. Systematically close to a source of water, the necropolises are nevertheless located far enough from the threat of floodwaters, in a dominant position. As markers in the landscape, they played a role in the appropriation of land by Bronze Age populations. The settlement pattern drastically changes at the turn of the Christian era. Then, the location of sites – mostly settlements – is dictated by the close proximity of arable lands. At a certain stage of their development that we are inclined to date to the very Late Pre-Islamic and Early Islamic periods, local populations started to take benefit of all the water sources available in the oasis for agricultural purposes, including those outside the alluvial plain, by digging monumental hydraulic structures
The ancient harbours of the Piraeus: Stratigraphy of "Moun1" drill core: discussion of results
International audienc
Stratigraphy of “MOUN1” Drill Core: Discussion of Results
Appendix n°4 in the book : Lovén, B. & Sapountzis, I. The Ancient Harbours of the Piraeus, Volume III.2, The Themistoclean Shipsheds in Group 1 at Mounichia Harbour – Architecture, Topography and Finds. Monographs of the Danish Institute at Athens 15,5 (Aarhus University Press 2021)
- …