253 research outputs found
Anti-CRISPR Phages Cooperate to Overcome CRISPR-Cas Immunity
This is the final version of the article. Available from Elsevier via the DOI in this record.Some phages encode anti-CRISPR (acr) genes, which antagonize bacterial CRISPR-Cas immune systems by binding components of its machinery, but it is less clear how deployment of these acr genes impacts phage replication and epidemiology. Here, we demonstrate that bacteria with CRISPR-Cas resistance are still partially immune to Acr-encoding phage. As a consequence, Acr-phages often need to cooperate in order to overcome CRISPR resistance, with a first phage blocking the host CRISPR-Cas immune system to allow a second Acr-phage to successfully replicate. This cooperation leads to epidemiological tipping points in which the initial density of Acr-phage tips the balance from phage extinction to a phage epidemic. Furthermore, both higher levels of CRISPR-Cas immunity and weaker Acr activities shift the tipping points toward higher initial phage densities. Collectively, these data help elucidate how interactions between phage-encoded immune suppressors and the CRISPR systems they target shape bacteria-phage population dynamics.M.L. was supported by funding from the Wellcome Trust (https://wellcome.ac.uk) (109776/Z/15/Z), which was awarded to E.R.W. E.R.W. further acknowledges the Natural Environment Research Council (https://nerc.ukri.org) (NE/M018350/1), the BBSRC (BB/N017412/1), and the European Research Council (https://erc.europa.eu) (ERC-STG-2016-714478 - EVOIMMECH) for funding. S.v.H. acknowledges funding from the People Programme (Marie Curie Actions; https://ec.europa.eu/research/mariecurieactions/) of the European Union’s Horizon 2020 (REA grant agreement no. 660039) and from the BBSRC (BB/R010781/1). S.G. acknowledges funding (Visiting Professorship) from the Leverhulme Trust. A.B. acknowledges funding from the Royal Society. The authors thank Olivier Fradet for experimental contributions and Adair Borges and Joe Bondy-Denomy (UCSF) for providing DMS3mvir-AcrIF4 and phage JBD26
Variability in the durability of CRISPR-Cas immunity
This is the author accepted manuscript. The final version is available from Royal Society via the DOI in this record.The durability of host resistance is challenged by the ability of pathogens to escape the defence of their hosts. Understanding the variability in the durability of host resistance is of paramount importance for designing more effective control strategies against infectious diseases. Here, we study the durability of various clustered regularly interspaced short palindromic repeats-Cas (CRISPR-Cas) alleles of the bacteria Streptococcus thermophilus against lytic phages. We found substantial variability in durability among different resistant bacteria. Since the escape of the phage is driven by a mutation in the phage sequence targeted by CRISPR-Cas, we explored the fitness costs associated with these escape mutations. We found that, on average, escape mutations decrease the fitness of the phage. Yet, the magnitude of this fitness cost does not predict the durability of CRISPR-Cas immunity. We contend that this variability in the durability of resistance may be because of variations in phage mutation rate or in the proportion of lethal mutations across the phage genome. These results have important implications on the coevolutionary dynamics between bacteria and phages and for the optimal deployment of resistance strategies against pathogens and pests. Understanding the durability of CRISPR-Cas immunity may also help develop more effective gene-drive strategies based on CRISPR-Cas9 technology. This article is part of a discussion meeting issue 'The ecology and evolution of prokaryotic CRISPR-Cas adaptive immune systems'.Natural Environment Research Council (NERC)Biotechnology & Biological Sciences Research Council (BBSRC)European CommissionEuropean Molecular Biology Organization (EMBO)Leverhulme TrustNatural Sciences and Engineering Research Council of Canad
Evolutionary emergence of infectious diseases in heterogeneous host populations
This is the final version. Available from Public Library of Science via the DOI in this record.The emergence and re-emergence of pathogens remains a major public health concern. Unfortunately, when and where pathogens will (re-)emerge is notoriously difficult to predict, as the erratic nature of those events is reinforced by the stochastic nature of pathogen evolution during the early phase of an epidemic. For instance, mutations allowing pathogens to escape host resistance may boost pathogen spread and promote emergence. Yet, the ecological factors that govern such evolutionary emergence remain elusive because of the lack of ecological realism of current theoretical frameworks and the difficulty of experimentally testing their predictions. Here, we develop a theoretical model to explore the effects of the heterogeneity of the host population on the probability of pathogen emergence, with or without pathogen evolution. We show that evolutionary emergence and the spread of escape mutations in the pathogen population is more likely to occur when the host population contains an intermediate proportion of resistant hosts. We also show that the probability of pathogen emergence rapidly declines with the diversity of resistance in the host population. Experimental tests using lytic bacteriophages infecting their bacterial hosts containing Clustered Regularly Interspaced Short Palindromic Repeat and CRISPR-associated (CRISPR-Cas) immune defenses confirm these theoretical predictions. These results suggest effective strategies for cross-species spillover and for the management of emerging infectious diseases.Natural Environment Research Council (NERC)Wellcome TrustBiotechnology & Biological Sciences Research Council (BBSRC)European CommissionMarie Curie ActionsNatural Sciences and Engineering Research Council of CanadaLeverhulme Trus
Review: ‘Gimme five’: future challenges in multiple sclerosis. ECTRIMS Lecture 2009
This article is based on the ECTRIMS lecture given at the 25th ECTRIMS meeting which was held in Düsseldorf, Germany, from 9 to 12 September 2009. Five challenges have been identified: (1) safeguarding the principles of medical ethics; (2) optimizing the risk/benefit ratio; (3) bridging the gap between multiple sclerosis and experimental autoimmune encephalitis; (4) promoting neuroprotection and repair; and (5) tailoring multiple sclerosis therapy to the individual patient. Each of these challenges will be discussed and placed in the context of current research into the pathogenesis and treatment of multiple sclerosis
A functional selection of viral genetic elements in cultured cells to identify hepatitis C virus RNA translation inhibitors†
We developed a functional selection system based on randomized genetic elements (GE) to identify potential regulators of hepatitis C virus (HCV) RNA translation, a process initiated by an internal ribosomal entry site (IRES). A retroviral HCV GE library was introduced into HepG2 cells, stably expressing the Herpes simplex virus thymidine kinase (HSV-TK) under the control of the HCV IRES. Cells that expressed transduced GEs inhibiting HSV-TK were selected via their resistance to ganciclovir. Six major GEs were rescued by PCR on the selected cell DNA and identified as HCV elements. We validated our strategy by further studying the activity of one of them, GE4, encoding the 5′ end of the viral NS5A gene. GE4 inhibited HCV IRES-, but not cap-dependent, reporter translation in human hepatic cell lines and inhibited HCV infection at a post-entry step, decreasing by 85% the number of viral RNA copies. This method can be applied to the identification of gene expression regulators
Nanoindentation study of the mechanical and damage behaviour of suspension plasma sprayed TiO2 coatings
TiO2 coatings can be used as self-cleaning surfaces owing to their photocatalytic and hydrophilic properties. Suspension plasma spray (SPS) has proven to be a feasible and cheap technique for producing self-cleaning surfaces with acceptable photo-activity. This paper presents a nanoindentation study of the mechanical properties (hardness. Young's modulus and scratch resistance) of photoactive layers of suspension plasma sprayed TiO2 coatings applied on to glass substrates. Microstructure observation showed that the rutile grains were surrounded by fine anatase crystals. Under the same spraying conditions, the resulting anatase/rutile concentrations varied depending on the cooling rate (the substrate being either cooled with water or in air). The results showed that higher concentrations of anatase, which is softer than rutile, reduced the scratch damage and increased the friction coefficient. (C) 2011 Elsevier B.V. All rights reserved.The study was financially supported by the Spanish Ministry of Science and Innovation (PID-600200-2009-5 and MAT2009-14144-C03-01 -02).Rayón Encinas, E.; Bonache Bezares, V.; Salvador Moya, MD.; Bannier, E.; Sánchez, E.; Denoirjean, A.; Ageorges, H. (2012). Nanoindentation study of the mechanical and damage behaviour of suspension plasma sprayed TiO2 coatings. Surface and Coatings Technology. 206(10):2655-2660. doi:10.1016/j.surfcoat.2011.11.010S265526602061
Switching Multiple Sclerosis Patients with Breakthrough Disease to Second-Line Therapy
BACKGROUND: Multiple sclerosis (MS) patients with breakthrough disease on immunomodulatory drugs are frequently offered to switch to natalizumab or immunosuppressants. The effect of natalizumab monotherapy in patients with breakthrough disease is unknown. METHODS: This is an open-label retrospective cohort study of 993 patients seen at least four times at the University of California San Francisco MS Center, 95 had breakthrough disease on first-line therapy (60 patients switched to natalizumab, 22 to immunosuppressants and 13 declined the switch [non-switchers]). We used Poisson regression adjusted for potential confounders to compare the relapse rate within and across groups before and after the switch. RESULTS: In the within-group analyses, the relapse rate decreased by 70% (95% CI 50,82%; p<0.001) in switchers to natalizumab and by 77% (95% CI 59,87%; p<0.001) in switchers to immunosuppressants; relapse rate in non-switchers did not decrease (6%, p = 0.87). Relative to the reduction among non-switchers, the relapse rate was reduced by 68% among natalizumab switchers (95% CI 19,87%; p = 0.017) and by 76% among the immunosuppressant switchers (95% CI 36,91%; p = 0.004). CONCLUSIONS: Switching to natalizumab or immunosuppressants in patients with breakthrough disease is effective in reducing clinical activity of relapsing MS. The magnitude of the effect and the risk-benefit ratio should be evaluated in randomized clinical trials and prospective cohort studies
Anomalous Hypothalamic Responses to Humor in Cataplexy
Cataplexy is observed in a subset of patients with narcolepsy and affects approximately 1 in 2,000 persons. Cataplexy is most often triggered by strong emotions such as laughter, which can result in transient, yet debilitating, muscle atonia. The objective of this study was to examine the neural systems underlying humor processing in individuals with cataplexy.While undergoing functional Magnetic Resonance Imaging (fMRI), we showed ten narcolepsy-cataplexy patients and ten healthy controls humorous cartoons. In addition, we examined the brain activity of one subject while in a full-blown cataplectic attack. Behavioral results showed that participants with cataplexy rated significantly fewer humorous cartoons as funny compared to controls. Concurrent fMRI showed that patients, when compared to controls and in the absence of overt cataplexy symptoms, showed pronounced activity in the emotional network including the ventral striatum and hypothalamus while viewing humorous versus non-humorous cartoons. Increased activity was also observed in the right inferior frontal gyri--a core component of the inhibitory circuitry. In comparison, the one subject who experienced a cataplectic attack showed dramatic reductions in hypothalamic activity.These findings suggest an overdrive of the emotional circuitry and possible compensatory suppression by cortical inhibitory regions in cataplexy. Moreover, during cataplectic attacks, the hypothalamus is characterized by a marked decrease in activity similar to that observed during sleep. One possible explanation for these findings is an initial overdrive and compensatory shutdown of the hypothalamus resulting in full cataplectic symptoms
- …