111 research outputs found
Occupational burden of disease in the Netherlands
Ongunstige arbeidsomstandigheden veroorzaken 2 tot 4% van de totale ziektelast in Nederland. Het begrip ziektelast is een maatstaf om de gevolgen van ziekte uit te drukken. Het combineert gezondheidsverlies door verminderde kwaliteit van leven en door vroegtijdig overlijden. Hoge werkdruk, blootstelling aan schadelijke stoffen (inclusief passief roken) en beeldschermwerk zijn de ongunstigste arbeidsomstandigheden. Zij zorgen voor veel ziektelast door burn-out, de chronische luchtwegaandoening COPD, longkanker en klachten van arm, nek en schouder (KANS). In het rapport is de positieve invloed van arbeid op de gezondheid niet meegenomen. Het RIVM laat voor het eerst zien welke arbeidsgerelateerde aandoeningen veel ziektelast in Nederland veroorzaken. Deze gegevens bieden aanknopingspunten voor verder onderzoek en voor maatregelen om de ziektelast door deze aandoeningen te verminderen. Dat is niet alleen goed voor werknemers en werkgevers, maar ook voor de volksgezondheid en de samenleving in haar geheel: health is wealth. In eerdere ziektelastberekeningen van de wereldgezondheidsorganisatie (WHO) is de arbeidsgerelateerde ziektelast in Nederland sterk onderschat. In Nederland veroorzaken niet zozeer de 'klassieke' risico's en aandoeningen, zoals arbeidsongevallen en slechthorendheid door lawaai, de meeste ziektelast. Juist 'nieuwe' aandoeningen, zoals burn-out en KANS, leiden hiertoe, en die zijn niet meegenomen in de WHO-schattingen. Behalve negatieve effecten op de gezondheid hebben ongunstige arbeidsomstandigheden een nadelig effect op de arbeidsproductiviteit, het ziekteverzuim en arbeidsongeschiktheid. In theorie blijkt het mogelijk om deze effecten te berekenen. Het is aan te bevelen om uit te zoeken of dit in de praktijk haalbaar is.Occupational health risks cause 2 to 4% of the total burden of disease in the Netherlands. The concept of burden of disease is a criterion to express the consequences of disease. It combines the time lived with disability and the time lost due to premature mortality. A high workload, exposure to harmful chemicals (including environmental tobacco smoke) and working with a computer are the most unfavourable working conditions. They contribute most to the occupational burden of disease caused by: burn-out, chronic obstructive pulmonary disease, lung cancer and complaints of arm, neck and shoulder (CANS). The health benefits of work were not included in this report. For the first time, the RIVM shows in this study which occupational diseases contribute most to the burden of disease in the Netherlands. The data offer starting points for further research and measures to reduce the burden of disease caused by these complaints. This is good not only for employers and employees but also for public health and society as a whole: health is wealth. The World Health Organization (WHO) underestimated the occupational burden of disease in the Netherlands in its earlier burden of disease assessments. In the Netherlands, most of the burden of disease is not caused by the 'classical' risks and diseases like accidents and hearing impairment caused by noise. Rather 'new' diseases like burn-out and CANS cause considerable loss of health and were not taken into account in the assessments of the WHO. Unfavourable working conditions do not only have negative effects on health, but also have a disadvantageous effect on productivity, absenteeism and incapacity for work. In theory it is possible to estimate these adverse effects. We therefore advise to study whether estimating them is feasible in practice.SZ
Relative contribution of various chronic diseases and multi-morbidity to potential disability among Dutch elderly
BACKGROUND: The amount of time spent living with disease greatly influences elderly people’s wellbeing, disability
and healthcare costs, but differs by disease, age and sex.
METHODS: We assessed how various single and combined diseases differentially affect life years spent living with
disease in Dutch elderly men and women (65+) over their remaining life course. Multistate life table calculations
were applied to age and sex-specific disease prevalence, incidence and death rates for the Netherlands in 2007. We
distinguished congestive heart failure, coronary heart disease (CHD), breast and prostate cancer, colon cancer, lung
cancer, diabetes, COPD, stroke, dementia and osteoarthritis.
RESULTS: Across ages 65, 70, 75, 80 and 85, CHD caused the most time spent living with disease for Dutch men
(from 7.6 years at age 65 to 3.7 years at age 85) and osteoarthritis for Dutch women (from 11.7 years at age 65 to 4.
8 years at age 85). Of the various co-occurrences of disease, the combination of diabetes and osteoarthritis led to
the most time spent living with disease, for both men (from 11.2 years at age 65 to 4.9 -years at age 85) and
women (from 14.2 years at age 65 to 6.0 years at age 85).
CONCLUSIONS: Specific single and multi-morbid diseases affect men and women differently at different phases in the
life course in terms of the time spent living with disease, and consequently, their potential disability. Timely sex and
age-specific interventions targeting prevention of the single and combined diseases identified could reduce
healthcare costs and increase wellbeing in elderly people
The global burden of cancer 2013 global burden of disease cancer collaboration
Importance Cancer is among the leading causes of death worldwide. Current estimates of cancer burden in individual countries and regions are necessary to inform local cancer control strategies. Objective To estimate mortality, incidence, years lived with disability (YLDs), years of life lost (YLLs), and disability-adjusted life-years (DALYs) for 28 cancers in 188 countries by sex from 1990 to 2013. Evidence Review The general methodology of the Global Burden of Disease (GBD) 2013 study was used. Cancer registries were the source for cancer incidence data as well as mortality incidence (MI) ratios. Sources for cause of death data include vital registration system data, verbal autopsy studies, and other sources. The MI ratios were used to transform incidence data to mortality estimates and cause of death estimates to incidence estimates. Cancer prevalence was estimated using MI ratios as surrogates for survival data; YLDs were calculated by multiplying prevalence estimates with disability weights, which were derived from population-based surveys; YLLs were computed by multiplying the number of estimated cancer deaths at each age with a reference life expectancy; and DALYs were calculated as the sum of YLDs and YLLs. Findings In 2013 there were 14.9 million incident cancer cases, 8.2 million deaths, and 196.3 million DALYs. Prostate cancer was the leading cause for cancer incidence (1.4 million) for men and breast cancer for women (1.8 million). Tracheal, bronchus, and lung (TBL) cancer was the leading cause for cancer death in men and women, with 1.6 million deaths. For men, TBL cancer was the leading cause of DALYs (24.9 million). For women, breast cancer was the leading cause of DALYs (13.1 million). Age-standardized incidence rates (ASIRs) per 100 000 and age-standardized death rates (ASDRs) per 100 000 for both sexes in 2013 were higher in developing vs developed countries for stomach cancer (ASIR, 17 vs 14; ASDR, 15 vs 11), liver cancer (ASIR, 15 vs 7; ASDR, 16 vs 7), esophageal cancer (ASIR, 9 vs 4; ASDR, 9 vs 4), cervical cancer (ASIR, 8 vs 5; ASDR, 4 vs 2), lip and oral cavity cancer (ASIR, 7 vs 6; ASDR, 2 vs 2), and nasopharyngeal cancer (ASIR, 1.5 vs 0.4; ASDR, 1.2 vs 0.3). Between 1990 and 2013, ASIRs for all cancers combined (except nonmelanoma skin cancer and Kaposi sarcoma) increased by more than 10% in 113 countries and decreased by more than 10% in 12 of 188 countries. Conclusions and Relevance Cancer poses a major threat to public health worldwide, and incidence rates have increased in most countries since 1990. The trend is a particular threat to developing nations with health systems that are ill-equipped to deal with complex and expensive cancer treatments. The annual update on the Global Burden of Cancer will provide all stakeholders with timely estimates to guide policy efforts in cancer prevention, screening, treatment, and palliation
Strength Training for Arthritis Trial (START): design and rationale
Background Muscle loss and fat gain contribute to the disability, pain, and morbidity associated with knee osteoarthritis (OA), and thigh muscle weakness is an independent and modifiable risk factor for it. However, while all published treatment guidelines recommend muscle strengthening exercise to combat loss of muscle mass and strength in knee OA patients, previous strength training studies either used intensities or loads below recommended levels for healthy adults or were generally short, lasting only 6 to 24 weeks. The efficacy of high-intensity strength training in improving OA symptoms, slowing progression, and affecting the underlying mechanisms has not been examined due to the unsubstantiated belief that it might exacerbate symptoms. We hypothesize that in addition to short-term clinical benefits, combining greater duration with high-intensity strength training will alter thigh composition sufficiently to attain long-term reductions in knee-joint forces, lower pain levels, decrease inflammatory cytokines, and slow OA progression. Methods/Design This is an assessor-blind, randomized controlled trial. The study population consists of 372 older (age ≥ 55 yrs) ambulatory, community-dwelling persons with: (1) mild-to-moderate medial tibiofemoral OA (Kellgren-Lawrence (KL) = 2 or 3); (2) knee neutral or varus aligned knee ( -2° valgus ≤ angle ≤ 10° varus); (3) 20 kg.m-2 ≥ BMI ≤ 45 kg.m-2; and (3) no participation in a formal strength-training program for more than 30 minutes per week within the past 6 months. Participants are randomized to one of 3 groups: high-intensity strength training (75-90% 1Repetition Maximum (1RM)); low-intensity strength training (30-40%1RM); or healthy living education. The primary clinical aim is to compare the interventions’ effects on knee pain, and the primary mechanistic aim is to compare their effects on knee-joint compressive forces during walking, a mechanism that affects the OA disease pathway. Secondary aims will compare the interventions’ effects on additional clinical measures of disease severity (e.g., function, mobility); disease progression measured by x-ray; thigh muscle and fat volume, measured by computed tomography (CT); components of thigh muscle function, including hip abductor strength and quadriceps strength, and power; additional measures of knee-joint loading; inflammatory and OA biomarkers; and health-related quality of life. Discussion Test-retest reliability for the thigh CT scan was: total thigh volume, intra-class correlation coefficients (ICC) = 0.99; total fat volume, ICC = 0.99, and total muscle volume, ICC = 0.99. ICC for both isokinetic concentric knee flexion and extension strength was 0.93, and for hip-abductor concentric strength was 0.99. The reliability of our 1RM testing was: leg press, ICC = 0.95; leg curl, ICC = 0.99; and leg extension, ICC = 0.98. Results of this trial will provide critically needed guidance for clinicians in a variety of health professions who prescribe and oversee treatment and prevention of OA-related complications. Given the prevalence and impact of OA and the widespread availability of this intervention, assessing the efficacy of optimal strength training has the potential for immediate and vital clinical impact
Branch&Rank for Efficient Object Detection
Ranking hypothesis sets is a powerful concept for efficient object detection. In this work, we propose a branch&rank scheme that detects objects with often less than 100 ranking operations. This efficiency enables the use of strong and also costly classifiers like non-linear SVMs with RBF-χ2 kernels. We thereby relieve an inherent limitation of branch&bound methods as bounds are often not tight enough to be effective in practice. Our approach features three key components: a ranking function that operates on sets of hypotheses and a grouping of these into different tasks. Detection efficiency results from adaptively sub-dividing the object search space into decreasingly smaller sets. This is inherited from branch&bound, while the ranking function supersedes a tight bound which is often unavailable (except for rather limited function classes). The grouping makes the system effective: it separates image classification from object recognition, yet combines them in a single formulation, phrased as a structured SVM problem. A novel aspect of branch&rank is that a better ranking function is expected to decrease the number of classifier calls during detection. We use the VOC’07 dataset to demonstrate the algorithmic properties of branch&rank.ISSN:0920-5691ISSN:1573-140
Gamma-Linolenic Acid Levels Correlate with Clinical Efficacy of Evening Primrose Oil in Patients with Atopic Dermatitis
Can we apply the Mendelian randomization methodology without considering epigenetic effects?
<p>Abstract</p> <p>Introduction</p> <p>Instrumental variable (IV) methods have been used in econometrics for several decades now, but have only recently been introduced into the epidemiologic research frameworks. Similarly, Mendelian randomization studies, which use the IV methodology for analysis and inference in epidemiology, were introduced into the epidemiologist's toolbox only in the last decade.</p> <p>Analysis</p> <p>Mendelian randomization studies using instrumental variables (IVs) have the potential to avoid some of the limitations of observational epidemiology (confounding, reverse causality, regression dilution bias) for making causal inferences. Certain limitations of randomized controlled trials, such as problems with generalizability, feasibility and ethics for some exposures, and high costs, also make the use of Mendelian randomization in observational studies attractive. Unlike conventional randomized controlled trials (RCTs), Mendelian randomization studies can be conducted in a representative sample without imposing any exclusion criteria or requiring volunteers to be amenable to random treatment allocation.</p> <p>Within the last decade, epigenetics has gained recognition as an independent field of study, and appears to be the new direction for future research into the genetics of complex diseases. Although previous articles have addressed some of the limitations of Mendelian randomization (such as the lack of suitable genetic variants, unreliable associations, population stratification, linkage disequilibrium (LD), pleiotropy, developmental canalization, the need for large sample sizes and some potential problems with binary outcomes), none has directly characterized the impact of epigenetics on Mendelian randomization. The possibility of epigenetic effects (non-Mendelian, heritable changes in gene expression not accompanied by alterations in DNA sequence) could alter the core instrumental variable assumptions of Mendelian randomization.</p> <p>This paper applies conceptual considerations, algebraic derivations and data simulations to question the appropriateness of Mendelian randomization methods when epigenetic modifications are present.</p> <p>Conclusion</p> <p>Given an inheritance of gene expression from parents, Mendelian randomization studies not only need to assume a random distribution of alleles in the offspring, but also a random distribution of epigenetic changes (e.g. gene expression) at conception, in order for the core assumptions of the Mendelian randomization methodology to remain valid. As an increasing number of epidemiologists employ Mendelian randomization methods in their research, caution is therefore needed in drawing conclusions from these studies if these assumptions are not met.</p
Contribution of Chronic Disease to the Burden of Disability
Background: Population ageing is expected to lead to strong increases in the number of persons with one or more disabilities, which may result in substantial declines in the quality of life. To reduce the burden of disability and to prevent concomitant declines in the quality of life, one of the first steps is to establish which diseases contribute most to
Recent trends in chronic disease, impairment and disability among older adults in the United States
<p>Abstract</p> <p>Background</p> <p>To examine concurrent prevalence trends of chronic disease, impairment and disability among older adults.</p> <p>Methods</p> <p>We analyzed the 1998, 2004 and 2008 waves of the Health and Retirement Study, a nationally representative survey of older adults in the United States, and included 31,568 community dwelling adults aged 65 and over. Measurements include: prevalence of chronic diseases including hypertension, heart disease, stroke, diabetes, cancer, chronic lung disease and arthritis; prevalence of impairments, including impairments of cognition, vision, hearing, mobility, and urinary incontinence; prevalence of disability, including activities of daily living (ADLs) and instrumental activities of daily living (IADLs).</p> <p>Results</p> <p>The proportion of older adults reporting no chronic disease decreased from 13.1% (95% Confidence Interval [CI], 12.4%-13.8%) in 1998 to 7.8% (95% CI, 7.2%-8.4%) in 2008, whereas the proportion reporting 1 or more chronic diseases increased from 86.9% (95% CI, 86.2%-89.6%) in 1998 to 92.2% (95% CI, 91.6%-92.8%) in 2008. In addition, the proportion reporting 4 or more diseases increased from 11.7% (95% CI, 11.0%-12.4%) in 1998 to 17.4% (95% CI, 16.6%-18.2%) in 2008. The proportion of older adults reporting no impairments was 47.3% (95% CI, 46.3%-48.4%) in 1998 and 44.4% (95% CI, 43.3%-45.5%) in 2008, whereas the proportion of respondents reporting 3 or more was 7.2% (95% CI, 6.7%-7.7%) in 1998 and 7.3% (95% CI, 6.8%-7.9%) in 2008. The proportion of older adults reporting any ADL or IADL disability was 26.3% (95% CI, 25.4%-27.2%) in 1998 and 25.4% (95% CI, 24.5%-26.3%) in 2008.</p> <p>Conclusions</p> <p>Multiple chronic disease is increasingly prevalent among older U.S. adults, whereas the prevalence of impairment and disability, while substantial, remain stable.</p
Effects of Ferumoxides – Protamine Sulfate Labeling on Immunomodulatory Characteristics of Macrophage-like THP-1 Cells
Superparamagnetic Iron Oxide (SPIO) complexed with cationic transfection agent is used to label various mammalian cells. Labeled cells can then be utilized as an in vivo magnetic resonance imaging (MRI) probes. However, certain number of in vivo administered labeled cells may be cleared from tissues by the host's macrophages. For successful translation to routine clinical application of SPIO labeling method it is important that this mode of in vivo clearance of iron does not elicit any diverse immunological effects. The purpose of this study was to demonstrate that SPIO agent ferumoxides-protamine sulfate (FePro) incorporation into macrophages does not alter immunological properties of these cells with regard to differentiation, chemotaxis, and ability to respond to the activation stimuli and to modulate T cell response. We used THP-1 cell line as a model for studying macrophage cell type. THP-1 cells were magnetically labeled with FePro, differentiated with 100 nM of phorbol ester, 12-Myristate-13-acetate (TPA) and stimulated with 100 ng/ml of LPS. The results showed 1) FePro labeling had no effect on the changes in morphology and expression of cell surface proteins associated with TPA induced differentiation; 2) FePro labeled cells responded to LPS with slightly higher levels of NFκB pathway activation, as shown by immunobloting; TNF-α secretion and cell surface expression levels of CD54 and CD83 activation markers, under these conditions, were still comparable to the levels observed in non-labeled cells; 3) FePro labeling exhibited differential, chemokine dependent, effect on THP-1 chemotaxis with a decrease in cell directional migration to MCP-1; 4) FePro labeling did not affect the ability of THP-1 cells to down-regulate T cell expression of CD4 and CD8 and to induce T cell proliferation. Our study demonstrated that intracellular incorporation of FePro complexes does not alter overall immunological properties of THP-1 cells. The described experiments provide the model for studying the effects of in vivo clearance of iron particles via incorporation into the host's macrophages that may follow after in vivo application of any type of magnetically labeled mammalian cells. To better mimic the complex in vivo scenario, this model may be further exploited by introducing additional cellular and biological, immunologically relevant, components
- …
