450 research outputs found

    The role of cigarette smoking and its interaction with cyclooxygenase-2 in acute ulcerative colitis in mice

    Get PDF
    published_or_final_versio

    Polysaccharides from the root of Angelica sinensis protect bone marrow and gastrointestinal tissues against the cytotoxicity of cyclophosphamide in mice

    Get PDF
    Cyclophosphamide (CY) is a cytostatic agent that produces systemic toxicity especially on cells with high proliferative capacity, while polysaccharides from Angelica sinensis (AP) have been shown to increase the turnover of gastrointestinal mucosal and hemopoietic stem cells. It is not known whether AP has an effect on CY-induced cytotoxicity on bone marrow and gastrointestinal tract. In this study, we assessed the protective actions of AP on CY-induced leukopenia and proliferative arrest in the gastroduodenal mucosa in mice. Subcutaneous injection of CY (200 mg/kg) provoked dramatic decrease in white blood cell (WBC) count and number of blood vessels and proliferating cells in both the gastric and duodenal mucosae. Subcutaneous injection of AP significantly promoted the recovery from leukopenia and increased number of blood vessels and proliferating cells in both the gastric and duodenal tissues. Western blotting revealed that CY significantly down-regulated the protein expression of vascular endothelial growth factor (VEGF), c-Myc and ornithine decarboxylase (ODC) in gastric mucosae but had no effect on epidermal growth factor (EGF) expression. AP also reversed the dampening effect of CY on VEGF expression in the gastric mucosa. These data suggest that AP is a cytoprotective agent which can protect against the cytotoxicity of CY on hematopoietic and gastrointestinal tissues when the polysaccharide is co-administered with CY in cancer patients during treatment regimen.published_or_final_versio

    Cigarette smoke promoted human xenograft tumors through the upregulation of cyclin D1 and cyclin-dependent kinases

    Get PDF
    published_or_final_versio

    Mechanism of inflammation-associated colonic tumorigenesis promoted by cigarette smoke

    Get PDF
    published_or_final_versio

    Anti-tumorigenic and Pro-apoptotic effects of CKBM on gastric cancer growth in nude mice

    Get PDF
    Natural botanical products can be integrated with western medicine to optimize the treatment outcome, increase immune function and minimize the side effects from western drug treatment. CKBM is a combination of herbs and yeasts formulated based on traditional Chinese medicinal principles. Previous study has demonstrated that CKBM is capable of improving immune responsiveness through the induction of cytokine mediators, such as TNF-α and IL-6. In this study, we aimed to investigate the effect of this immunomodulatory drug on gastric cancer growth using a human xenograft model. Gastric cancer tissues were implanted subcutaneously into athymic nude mice followed by a 14-day or 28-day of CKBM treatment. Results showed that higher doses of CKBM (0.4 or 0.8 ml/mouse/day) produced a dose-dependent inhibitory effect on gastric tumor growth after 28-day drug treatment. This was associated with a decrease of cellular proliferation by 30% with concomitant increase in apoptosis by 97% in gastric tumor cells when compared with the control group. In contrast, CKBM showed no effect on angiogenesis in gastric tumors. This study demonstrates the anti-tumorigenic action of CKBM on gastric cancer probably via inhibition of cell proliferation and induction of apoptosis, and provides future potential targets of this drug candidate on cancer therapy.published_or_final_versio

    Estimation of the solubility parameters of model plant surfaces and agrochemicals: a valuable tool for understanding plant surface interactions

    Get PDF
    Background Most aerial plant parts are covered with a hydrophobic lipid-rich cuticle, which is the interface between the plant organs and the surrounding environment. Plant surfaces may have a high degree of hydrophobicity because of the combined effects of surface chemistry and roughness. The physical and chemical complexity of the plant cuticle limits the development of models that explain its internal structure and interactions with surface-applied agrochemicals. In this article we introduce a thermodynamic method for estimating the solubilities of model plant surface constituents and relating them to the effects of agrochemicals. Results Following the van Krevelen and Hoftyzer method, we calculated the solubility parameters of three model plant species and eight compounds that differ in hydrophobicity and polarity. In addition, intact tissues were examined by scanning electron microscopy and the surface free energy, polarity, solubility parameter and work of adhesion of each were calculated from contact angle measurements of three liquids with different polarities. By comparing the affinities between plant surface constituents and agrochemicals derived from (a) theoretical calculations and (b) contact angle measurements we were able to distinguish the physical effect of surface roughness from the effect of the chemical nature of the epicuticular waxes. A solubility parameter model for plant surfaces is proposed on the basis of an increasing gradient from the cuticular surface towards the underlying cell wall. Conclusions The procedure enabled us to predict the interactions among agrochemicals, plant surfaces, and cuticular and cell wall components, and promises to be a useful tool for improving our understanding of biological surface interactions

    An experimental study of the intrinsic stability of random forest variable importance measures

    Get PDF
    BACKGROUND: The stability of Variable Importance Measures (VIMs) based on random forest has recently received increased attention. Despite the extensive attention on traditional stability of data perturbations or parameter variations, few studies include influences coming from the intrinsic randomness in generating VIMs, i.e. bagging, randomization and permutation. To address these influences, in this paper we introduce a new concept of intrinsic stability of VIMs, which is defined as the self-consistence among feature rankings in repeated runs of VIMs without data perturbations and parameter variations. Two widely used VIMs, i.e., Mean Decrease Accuracy (MDA) and Mean Decrease Gini (MDG) are comprehensively investigated. The motivation of this study is two-fold. First, we empirically verify the prevalence of intrinsic stability of VIMs over many real-world datasets to highlight that the instability of VIMs does not originate exclusively from data perturbations or parameter variations, but also stems from the intrinsic randomness of VIMs. Second, through Spearman and Pearson tests we comprehensively investigate how different factors influence the intrinsic stability. RESULTS: The experiments are carried out on 19 benchmark datasets with diverse characteristics, including 10 high-dimensional and small-sample gene expression datasets. Experimental results demonstrate the prevalence of intrinsic stability of VIMs. Spearman and Pearson tests on the correlations between intrinsic stability and different factors show that #feature (number of features) and #sample (size of sample) have a coupling effect on the intrinsic stability. The synthetic indictor, #feature/#sample, shows both negative monotonic correlation and negative linear correlation with the intrinsic stability, while OOB accuracy has monotonic correlations with intrinsic stability. This indicates that high-dimensional, small-sample and high complexity datasets may suffer more from intrinsic instability of VIMs. Furthermore, with respect to parameter settings of random forest, a large number of trees is preferred. No significant correlations can be seen between intrinsic stability and other factors. Finally, the magnitude of intrinsic stability is always smaller than that of traditional stability. CONCLUSION: First, the prevalence of intrinsic stability of VIMs demonstrates that the instability of VIMs not only comes from data perturbations or parameter variations, but also stems from the intrinsic randomness of VIMs. This finding gives a better understanding of VIM stability, and may help reduce the instability of VIMs. Second, by investigating the potential factors of intrinsic stability, users would be more aware of the risks and hence more careful when using VIMs, especially on high-dimensional, small-sample and high complexity datasets

    Developments in the Photonic Theory of Fluorescence

    Get PDF
    Conventional fluorescence commonly arises when excited molecules relax to their ground electronic state, and most of the surplus energy dissipates in the form of photon emission. The consolidation and full development of theory based on this concept has paved the way for the discovery of several mechanistic variants that can come into play with the involvement of laser input – most notably the phenomenon of multiphoton-induced fluorescence. However, other effects can become apparent when off-resonant laser input is applied during the lifetime of the initial excited state. Examples include a recently identified scheme for laser-controlled fluorescence. Other systems of interest are those in which fluorescence is emitted from a set of two or more coupled nanoemitters. This chapter develops a quantum theoretical outlook to identify and describe these processes, leading to a discussion of potential applications ranging from all-optical switching to the generation of optical vortices

    Azimuthal Charged-Particle Correlations and Possible Local Strong Parity Violation

    Get PDF
    Parity-odd domains, corresponding to nontrivial topological solutions of the QCD vacuum, might be created during relativistic heavy-ion collisions. These domains are predicted to lead to charge separation of quarks along the system’s orbital momentum axis. We investigate a three-particle azimuthal correlator which is a P even observable, but directly sensitive to the charge separation effect. We report measurements of charged hadrons near center-of-mass rapidity with this observable in Au+Au and Cu+Cu collisions at √sNN=200  GeV using the STAR detector. A signal consistent with several expectations from the theory is detected. We discuss possible contributions from other effects that are not related to parity violation
    corecore