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Abstract

Background: The stability of Variable Importance Measures (VIMs) based on
random forest has recently received increased attention. Despite the extensive
attention on traditional stability of data perturbations or parameter variations,
few studies include influences coming from the intrinsic randomness in generating
VIMs, i.e. bagging, randomization and permutation. To address these influences,
in this paper we introduce a new concept of intrinsic stability of VIMs, which is
defined as the self-consistence among feature rankings in repeated runs of VIMs
without data perturbations and parameter variations. Two widely used VIMs, i.e.,
Mean Decrease Accuracy (MDA) and Mean Decrease Gini (MDG) are
comprehensively investigated. The motivation of this study is two-fold. First, we
empirically verify the prevalence of intrinsic stability of VIMs over many real-world
datasets to highlight that the instability of VIMs does not originate exclusively
from data perturbations or parameter variations, but also stems from the intrinsic
randomness of VIMs. Second, through Spearman and Pearson tests we
comprehensively investigate how different factors influence the intrinsic stability.

Results: The experiments are carried out on 19 benchmark datasets with diverse
characteristics, including 10 high-dimensional and small-sample gene expression
datasets. Experimental results demonstrate the prevalence of intrinsic stability of
VIMs. Spearman and Pearson tests on the correlations between intrinsic stability
and different factors show that #feature (number of features) and #sample (size
of sample) have a coupling effect on the intrinsic stability. The synthetic indictor,
#feature/#sample, shows both negative monotonic correlation and negative
linear correlation with the intrinsic stability, while OOB accuracy has monotonic
correlations with intrinsic stability. This indicates that high-dimensional,
small-sample and high complexity datasets may suffer more from intrinsic
instability of VIMs. Furthermore, with respect to parameter settings of random
forest, a large number of trees is preferred. No significant correlations can be seen
between intrinsic stability and other factors. Finally, the magnitude of intrinsic
stability is always smaller than that of traditional stability.

Conclusion: First, the prevalence of intrinsic stability of VIMs demonstrates that
the instability of VIMs not only comes from data perturbations or parameter
variations, but also stems from the intrinsic randomness of VIMs. This finding
gives a better understanding of VIM stability, and may help reduce the instability
of VIMs. Second, by investigating the potential factors of intrinsic stability, users
would be more aware of the risks and hence more careful when using VIMs,
especially on high-dimensional, small-sample and high complexity datasets.

Keywords: random forest; variable importance measure; stability; feature
selection
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Background
Feature selection is widely used to identify the most discriminating features out of

a large number of features in bio-medical applications, such as biomaker discovery,

medical diagnosis, and gene selection. Random Forest (RF) is an ensemble classifier,

which applies bagging technique to construct an ensemble of trees, with random-

ization technique for the growth of each tree [1]. The tree-based ensemble makes

RF suitable for handling with both categorical and numerical features, missing val-

ues, and redundant features [2]. Especially, RF is suitable for high-dimensional and

small-sample datasets [3, 4, 5, 6]. RF provides two Variable Importance Measures

(VIMs), i.e. the Mean Decrease Accuracy (MDA) and Mean Decrease Gini (MDG).

The feature ranking produced by MDA or MDG serves as a filter to eliminate irrel-

evant features, and has been applied in a large variety of domains [3, 7, 8, 9, 10, 11].

It is widely believed that high stability is equally important as high classification

accuracy in the feature selection literature [12, 13, 14, 15, 16, 17, 18]. The stability

of feature selection always refers to the sensitivity of a VIM to data perturbation

or parameter variations. With respect to data perturbation stability, the main fo-

cus is the consistence between feature rankings, each of which comes from different

subsamples of a training set (e.g., 10-fold cross validation) [19, 20, 21, 15]. Calle

and Urrea discussed the stability of both MDA and MDG rankings based on the

variations in a bladder cancer recurrence dataset containing 723 independent fea-

tures [22]. The average percentage of overlap between the original ranking and the

ranking in the perturbed datasets (10% left out) is used to assess the stability. The

conclusion was that MDG is robust to small perturbations of the data while MDA

rankings behavior was completely unstable. Nicodemus, K.K kept going deep into

the instability of VIMs with respect to data-specific characteristics. Some artifi-

cial datasets were generated concerning within-feature relevance and differences in

category frequencies [23]. The stability was analyzed by the correlation coefficient

between the feature rankings from the original data set and 100 90% subsamples.

The comparison leads to the conclusion that MDG is inferior to MDA on artificial

datasets. Verikas et al explored the MDA stability by observing the Spearman co-

efficient of feature rankings obtained in 20 different runs [24]. Each run performs

under the same parameter setting with the training dataset being randomly selected

out of the original dataset. Kursa, M.B. compared the stability of four RF-based

or RF-relevant VIMs [25]. The stability was assessed among 30 optimal feature

subsets derived from 30 bootstrap samples of equal size to the original data. With

respect to parameter-variations stability, the studies concentrate on the consistence

between feature rankings, when the parameter settings are different from each other

[14, 12, 16, 17]. Okun and Priisalu noticed the influence of the number of features

for node split on the feature rankings from MDG, where the correlation of two fea-

ture rankings was computed, provided before and after the number of features for

node split is changed [4]. The results showed the correlation of two feature rankings

can be weak while they may exhibit similar accuracy on the same data set. Verikas

et al also tried to demonstrate the correlations between a pair of feature rankings

generated by a pair of random forests with a very similar number of trees and/or

variables (adjacent numbers) [24]. The results showed lower correlations when the
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number of variables used to split a node in two RFs differs more. In summary, pre-

vious studies on the stability of VIMs have tried to attribute the stability problem

to the perturbations of training data or parameter settings.

In this paper we address the problem of intrinsic stability which comes from the

algorithm design of VIMs. Generally speaking, most feature selection algorithms

are relatively stable when eliminating the impacts of data-perturbations or param-

eter variations, e.g. Support Vector Machine Recursive Feature Elimination [26]

and relief-F [27]. However, due to the intrinsic randomness of bagging and ran-

domization, random forest lacks stability decreasing the robustness of performance

[28, 29, 30]. In our previous work [28], we noticed the intrinsic stability problem of

random forest and tried to alleviate it by combining of proximity measure and sup-

port vector machine. However, the intrinsic stability problem has not been formally

defined and thoroughly investigated, especially the comparison with traditional sta-

bility and potential affecting factors. This limitation motivated us to explore the

intrinsic stability of VIMs based on random forest. We introduce the concept of

intrinsic stability which is defined by the self-consistence among the feature rank-

ings of repeated runs. Intrinsic stability describes the stability of VIMs stemming

from the intrinsic randomness in algorithm design and distinguishes from traditional

stability of data perturbations and parameter variations.

The goal of this study is to explore the intrinsic stability that stems from the

intrinsic randomness of VIMs. The experiments were carried out on 19 benchmark

datasets with diversified characteristics. Ten of them are gene expression datasets,

which are described as high dimensional and small sample problemm, since small

sample size and high feature redundancy are important factors that increase ran-

domness [19, 21, 31, 25].

Besides the demonstration of intrinsic stability on a variety of datasets, a more

valuable goal of this study is to investigate the influence of several factors on intrinsic

stability throughout the VIM process. First, we examined the impact of parameters

setting, i.e. the number of trees (ntree) and the number of splitting features candi-

date for each node (mtry). Second, we investigated the impact of dataset indicators,

i.e. the number of features, sample size, the number of classes, and model accuracy.

Another highlight of our study is the comparison of magnitude of intrinsic stability

with traditional stability, which gives a better understanding of the importance of

intrinsic stability.

Methods
Random Forest Variable Importance Measures

Random forest model

Random forest (RF) is an ensemble of multiple decision trees. Each tree of RF is

grown with a subset of data made from bootstrap and random subset of variables [1].

The process of sampling a bootstrap data from the original training data to establish

the training dataset for each tree is described as bagging technique. The process of

selecting a feature subset of the original feature set for tree-node split is described as

randomization technique. To classify a new instance, RF puts the new instance down

each tree in the forest. Each tree provides a predicted label as a vote for prediction.

RF chooses the classification with the most votes. With respect to bagging method,
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there are on average 36.8% of original instances not used as the training dataset

for each meta tree [1]. All the excluded examples construct the so called out-of-bag

dataset (OOB dataset). The OOB accuracy is always applied to evaluate the RF

performance. Building on the bagging and randomization technique, RF achieves

higher accuracy with low bias and variance than other popular tree structured

algorithms like CART, C4.5 and ID3, and has been considered as a highly preferred

state-of-art machine learning model [32].

MDA and MDG

Considering the learning scenario, the data is described as z = (x, y) where x refers

to an instance and y refers to the label. The instance can further be denoted as

x = (x1, x2, ..., xd) ∈ X, with the upper index 1, 2, ..., d representing the original

sequence numbers of the features, and d is the size (cardinality) of the feature set.

When a VIM method is performed, each feature is designated with an importance

score. Thus a feature ranking can be obtained by ordering the importance scores.

The feature ranking can be described as follows:

RankFea = (xπ(1), xπ(2), ..., xπ(d)) (1)

where π(j), j = 1, 2, ..., d is the new index of feature xj in the descending ranking.

Building on RF modeling, MDA and MDG have been proposed to serve as variable

importance methods. Suppose ht(xi) and ht(x
j
i ) refer to the predicted label for OOB

instance xi before and after feature permutation respectively, MDA measures the

importance of a feature xj by calculating the mean decrease in the OOB accuracy

before and after the permutation of feature xj , i.e.,

V I(xj) =
1

ntree

∑ntree

t=1

∑
i∈OOB

I (yi = ht (xi))−
∑

i∈OOB
I
(
yi = ht

(
xji

))
|OOB|

(2)

For MDG, we measure the total decrease in node impurities (e.g., Gini index) from

splitting on the feature, and average over all trees. Suppose Gini(j) is the Gini

index of feature xj , and ndot is the number of tree nodes based on feature xj , the

importance score by MDG is defined as follows:

V I(xj) =
1

ndot

[
1−

ndot∑
k=1

Gini(j)
k

]
(3)

where Gini(j)
k

is the kth Gini index of feature xj among the ndot tree nodes.

Sources of randomness in MDG and MDA

The problem of the reproducibility of RF has received attention [29, 30]. It is pointed

out that the stability of RF is reduced by two random components: the bagging

method and the randomization method. According to the algorithm mechanism,

both MDA and MDG involve the two random components in feature ranking pro-

cess. Beyond that, one more random component has been involved in MDA, i.e.
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feature permutation [28]. The random components of VIMs can be eloquently visu-

alized in Fig.1.

It can be seen in Fig.1, MDG only includes two random components from RF,

i.e., bagging (randomness component 1) and randomization (random component 2).

Besides them, MDA involves the third random components of feature permutation

(randomness component 3). Knowing the anchor points of random components in

VIMs helps understand the sources of intrinsic instability.

Evaluation criteria for VIM stability

There are a few evaluation criteria aiming to measure the VIM stability [33, 34,

35, 36]. Here we propose to measure the consistence between the sequences as a

measure of VIM stability. Generally, VIM stability is measured with respect to

feature ranking. Three commonly used evaluation criteria, i.e., Spearman coefficient,

Jaccard index and Kuncheva index, are applied to comprehensively assess the VIM

stability. Among them, Spearman coefficient focuses on the correlation between

two sequences, while Jaccard index and Kuncheva index concern the overlap of

feature subsets. Moreover, considering the fact that a slight perturbation in feature

importance may lead to a dramatic change in feature ranking, mean absolute relative

difference (MARD) is also used to evaluate the performance of VIM stability. MARD

is often used as a quantitative indicator of quality assurance and quality control

for repeated measurements where the outcomes are expected to be the same. The

measurement of MARD provides detailed information of VIM stability.

Now consider the general framework for assessing VIM stability among multiple

feature rankings. Given k feature rankings: RankFea1, RankFea2, ..., RankFeak,

the consistence among the k feature rankings is measured by averaging over all

pairwise feature rankings, i.e., (RankFeag, RankFeah) where g, h ∈ {1, 2, ..., k}
and g 6= h. The average consistence is computed as follows:

stabidxk =
2
∑k−1
g=1

∑k
h=g+1 stabidx

2(RankFeag, RankFeah)

k(k − 1)
(4)

where stabidx2(RankFeag, RankFeah) represents an evaluation criterion to mea-

sure the pairwise consistence.

It is worth noting that, VIMs are extremely sensitive to redundant or noisy fea-

tures, especially on high dimensional with a small sample size datasets. It makes

sense to only analyze the top ranked features [35, 36]. In this study, we con-

strain that up to top 100 features submitted to stability evaluation. That means,

stabidx2(RankFeag, RankFeah) is computed with respect to the top 100 features

if the length of feature ranking is larger than 100.

Spearman coefficient

Spearman coefficient instinctively assesses the rank correlation between two se-

quences of ranking features [37]. The calculation of Spearman coefficient begins

with the process of converting the numerical sequence to ranks. Building on two

sorted feature rankings (RankFeag, RankFeah), the Spearman coefficient defined
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for pairwise consistence can be given by

stabidx2Spearman = 1− 6

d∑
j=1

(
RankFeagj −RankFeahj

)2
d(d2 − 1)

(5)

where RankFeagj and RankFeahj are the index of feature xj in the feature ranking

respectively. A preferred value is 1 when the two feature rankings are identical and

a value of -1 meaning that they have exactly inverse orders. According to the limit

of up to top 100 features, d is set to be 100 if the length of feature ranking is larger

than 100.

Jaccard index

Jaccard index is widely used in the literature of stability evaluation, which calculates

the similarity between pairs of feature rankings concerning the aspect of overlap [38].

For two sorted feature rankings (RankFeag, RankFeah), Jaccard index is defined

as the size of the intersection of two sequences divided by the size of the union of

the two sequences. The Jaccard index definitely will be 1 when the numerator and

denominator are both 1. Therefore, in order to correct this problem, an alternate

Jaccard index, which iterates through each sub-sequence and then averages the

aggregated results from all steps, is given as follows:

stabidx2Jaccard =
1

d− 1

d−1∑
j=1

∣∣RankFeag1...j ∩RankFeah1...j∣∣∣∣RankFeag1...j ∪RankFeah1...j∣∣ (6)

where RankFeag1...j , RankFea
h
1...j are the sub-sequence of the original feature

rankings (RankFeag, RankFeah). Jaccard index takes value in [0, 1]. The closer

that number is to 1, the better the VIM stability is. According to the limit of up

to top 100 features, d is changed to be 100 if the length of feature ranking is larger

than 100.

Kuncheva index

Kuncheva index is a more sensitive measure than Jaccard index, which can correct

the evaluation bias [33]. It is pointed out that Jaccard index tends to produce higher

values for larger subsets due to the increased bias of selecting overlapping features

by chance. Kuncheva index tends to provide a correction for chance. For two sorted

feature rankings (RankFeag, RankFeah), the computation iterates through each

sub-sequence and then averaged evaluation is defined as

stabidx2Kuncheva =
1

d− 1

d−1∑
j=1

rj −
(
j2
/
d

)
j −

(
j2
/
d

) (7)

where rj is the cardinality of intersection of sub-sequences RankFeag1...j and

RankFeah1...j . Kuncheva index takes a value in [−1, 1]. Larger value indicates larger

number of common features in both sub-sequences. According to the limit of up to

top 100 features, d is set to be 100 if the length of feature ranking is larger than

100.
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MARD

The evaluation criterion of mean absolute relative difference (MARD) is a frequently

used measure of the differences between two sequences of real values [39]. Basically,

the MARD represents the standard deviation of the differences between two se-

quences. MARD is a good measure of consistence of two sequences with respect

to real values. For two sequences of importance score IMSg and IMSh, MARD

calculates the difference of absolute values of importance score between sequences

as follows:

stabidx2MARD =
1

d

d∑
j=1

∣∣sgj − shj ∣∣
(sgj + shj )/2

(8)

where sgj , s
h
j represent the elements of scores sequence IMSg, IMSh, respectively.

It is worth noting that the calculation of MARD up to the top 100 features is

somewhat complicated. In this study, The sequence of importance score is obtained

by the union of pairwise sequences with up to top 100 features. Therefore, there

may be more than 100 features involved in each sequence of importance scores.

Accordingly, d is the united length of the two sequences when the original feature

ranking is larger than 100.

Datasets and Experimental Setup
In order to provide a more convincing empirical verification, various types of

datasets were chosen. Most of the datasets in this study are collected from the biol-

ogy domain and have the characteristics of small sample-size and high-dimensional

features. Table 1 shows a summary of the 19 data sets used. Among them, 14 of

the total 19 datasets comes from the application of biology, and 11 from gene ex-

pression datasets except Arcene and madelon, are obtained from a repository of the

most widely studied gene expression sets (http://www.gems-system.org/) [40]. The

dataset Arcene, madelon and the rest are obtained from UCI Machine Learning

Repository (http://archive.ics.uci.edu/ml/).

Four dataset indicators are used to describe the characteristics of datasets. Besides

three commonly used statistics, i.e., #feature, #sample and #class, the fourth

indicator OOB accuracy is used to evaluate the complexity of a dataset [41]. The

OOB accuracy of each dataset is the best result of RF on the original dataset with

fine-tuned parameters. The implementation of RF model, as well as the runs of

MDA and MDG, is executed in the R environment (http://cran.r-project.org/) by

calling for the R package of randomForest4.6-10 [42].

In our experiments, the intrinsic stability is assessed by the self-consistence of the

results in repeated 10 runs. The self-consistence among the 10 feature rankings are

evaluated respectively by Spearman coefficient, Jaccard index, and Kuncheva index,

while the difference of 10 sequences of importance scores is measured by MARD.

The illustration of intrinsic stability was conducted in three stages. First, in order

to get a stable performance of VIMs, the impact of parameter setting was explored.

Second, the correlations between four dataset indicators and the intrinsic stability



Huazhen et al. Page 8 of 24

are statistically investigated. Finally, the magnitude of intrinsic stability was com-

pared with that of the traditional stability with respect to data perturbations and

parameter variations.

Results
Influence of the parameter setting on intrinsic stability

In order to explore whether or not the intrinsic stability is affected by the parameter

setting of VIMs, the distribution of intrinsic stability against different parameter

settings are investigated. The two key parameters ntree and mtry are set to different

values respectively. The range of ntree is set as (50, 100, 200, 500, 1000, 2000, 5000,

10000, 20000 and 50000) and the range of mtry is set as (one,dwdef,def, updef ),

where def means the default value of mtry i.e. the square-root of the total number

of features, dwdef means a half of def and updef means one and a half of def. For

each dataset, the distribution of intrinsic stability against different values of ntree

with the value of mtry being def is displayed in Fig. 2. The distribution of intrinsic

stability against different values of mtry with ntree being 20000 is displayed Fig. 3.

It is worth noting, there are two set of stability indices presented in our study. The

first group includes Spearman coefficient, Jaccard index and Kuncheva index, which

are based on feature ranking and prefer to be as high as 1. The other is MARD,

which is based on the scores of feature importance and prefers to be as low as zero.

It can be seen from Fig. 2, for both MDA and MDG, the intrinsic stability is

significantly more obvious to parameter ntree. With the increase of ntree, Spear-

man coefficient, Jaccard index and Kuncheva index ascend gradually and MARD

gradually declines. It shows that the role of ntree nonlinearly decreases with its

increasing value. Note that, even when ntree equal to 50000, the values of indices

on most of the datasets are still away from the preferred value, which is 1 for the

stability indices based on feature rankings and 0 for MARD, especially for datasets

with small-size examples and high-dimensional features.

In contrast, Fig.3 shows that the parameter mtry has little impact on the per-

formance of intrinsic stability. It remained stable against different values of mtry

across the 19 datasets. Similar to the results of ntree, the magnitudes of intrinsic

stability are always away from the preferred value. Especially, the intrinsic stabil-

ity on datasets with small-size examples and high-dimensional features tend to be

poorer than others.

The demonstration of intrinsic stability on different datasets

The intrinsic stability across all the 19 datasets are investigated under predefined

parameter settings. According to the finding in Figs.2 and 3, to eliminate the influ-

ence of parameters we set ntree to be 20000 and mtry to be the default settings of

def. The results are respectively shown in Table 2 for MDA and Table 3 for MDG. In

each table the performance of stability index is described as its mean and variance

over all possible 45 pairwise computations.

It can be seen in Table 2 with respect to Spearman coefficient, Jaccard index and

Kuncheva index, most of values in terms of the mean are smaller than 1, and the

scores in terms of MARD do not touch the bottom of zero. These observations illus-

trate the prevalence of inconsistence among the results in repeated runs. Especially,
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the values on gene expression datasets are significantly more obvious than other

datasets, which reveals that VIMs on datasets with small-size samples and high di-

mensional features are more likely to suffer from intrinsic instability. Additionally,

all the values in terms of variance are as small as zero, which indicates that the

results from different pairwise computations are consistent. According to Table 3,

the performance of MDG is analogous to that of MDA.

Correlation between the dataset indicators and intrinsic stability

In this section, we analyze the correlation between the indicators of dataset charac-

teristics and the intrinsic stability with the purpose of better understanding of the

potential factors that may affect the intrinsic stability. The indicators including the

number of features, sample size, OOB accuracy and number of classes are studied

respectively. In our experiments, two correlation coefficients, i.e., Spearman coeffi-

cient and Pearson coefficient, are both used to capture the relationship. Spearman

benchmarks monotonic relationship while Pearson coefficient benchmarks linear re-

lationship. For each correlation test, the performance is described as estimate and

p value, which is tested with confidence of 95%.

A preliminary test on the dependencies between different indicators on the 19

datasets showed that #feature and #sample is not independent. (Spearman cor-

relation coefficient for #feature and #sample is -0.63, with a p-value of 0.0038.)

Specifically speaking the datasets in Table 1 can be divided into two categories

of datasets: a) low-dimensional with a large number of samples which is the for-

mer 9 datasets in Table 1. b) high-dimensional with a small sample size the latter

10 datasets in Table 1. To eliminate the interference we study the role of feature

and sample independently on these two groups respectively. The results in terms of

Spearman coefficient and Pearson coefficient are displayed in Table 4 for datasets(a)

and Table 5 for datasets(b) respectively. Further more, to investigate the coupling

effect of #feature and #sample on the whole 19 datasets, we evaluate the rela-

tionship between intrinsic stability and a synthetic indicator #feature/ #sample,

which can be seen as an indicator of degree of high dimensional and small sample of

the dataset. Table 6 and Table 7 show the relationships between intrinsic stability

and #feature/ #sample as well as #class and OOB accuracy for MDA and MDG

respectively.

Table 4 shows the results for datasets(a). For #feature, the performance are same

regardless of MDA or MDG. That is, the estimates of Spearman coefficient and

Pearson coefficient are all negative in terms of the stability indices based on feature

ranking and positive based on MARD. Meanwhile, most of their p values are all

below the significance level 5%. This observation reflects that the number of fea-

tures basically performs both negative monotonic correlation and negative linear

correlation with the intrinsic stability. When it comes to #sample in terms of both

Spearman coefficient and Pearson coefficient, the p values are all higher than the

significance level 5%. From Table 5 which shows the results for datasets(b) with

respect to both #feature and #sample, most of the p values are significantly higher

than the significance level 5%, except that the #feature in case of Spearman co-

efficient for MDA shows both negative monotonic correlation and negative linear
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correlation. This implies a complicated and ambiguous relationship between intrin-

sic stability and #feature as well as #sample for high dimensional and small sample

datasets.

As shown in Table 6 with respect to the synthetic indictor #feature/#sample, the

estimates of Spearman coefficient and Pearson coefficient are all negative in terms

of the stability indices based on feature ranking and positive based on MARD, with

their p values all below the significance level 5%. This observation reflects that the

synthetic indictor #feature/#sample performs both negative monotonic correlation

and negative linear correlation with the intrinsic stability. This implies that high

dimensional and small sample datasets are prone to intrinsic instability of VIMs.

When it comes to #class all the p values are higher than the significance level

5%, which indicates that there is no significant correlation between the number

of classes and the intrinsic stability. The results of OOB accuracy in the case of

Spearman coefficient are not consistent. The p value of the stability index in terms

of Spearman coefficient is over 5% while that of Jaccard index, Kuncheva index and

MARD are below the significance level of 5%. In the case of Pearson coefficient,

only Kuncheva index has p value below the significance level. The performance in

terms of OOB accuracy leads us to conclude that there is only monotonic correlation

between OOB accuracy and intrinsic stability. This implies that data complexity

may have impact on the intrinsic stability of VIMs. From Table 7, we find similar

performance except for the results of OOB accuracy. It shows only the p values in

terms of Spearman coefficient between OOB accaracy , Jaccard index and Kuncheva

index are below 5%, which reveals a weak monotonic correlation between the MDG

intrinsic stability and the OOB accuracy. Remembering the importance scores of

MDG which is not calculated by OOB accuracy but by Gini index, the mechanism

of importance score calculation contributes to this observation.

Comparison of intrinsic stability and data-perturbation stability

In this section, the comparison of intrinsic stability and data-perturbation stability

are conducted. The data perturbation is conducted by 10-fold cross validation.

To do this, an original dataset is randomly partitioned into 10 equal sized data

subsets, 9 of the 10 data subsets are used as training set to produce a feature

ranking. This process is repeated 10 times, each of which includes different folds

as the training dataset. The 10 lists of feature importance scores are then used to

compute Spearman coefficient, Jaccard index, Kuncheva index and MARD. Then

the average over the 45 pairwise computations are recorded. For intrinsic stability

10 runs of VIMs are executed on each training set, and the stability indices on that

training set are computed. Finally, the averaged results over all the 10 training sets

is reported. The comparison of intrinsic stability and data-perturbation stability of

MDA are displayed in Fig 4 and the results of MDG are displayed in Fig. 5.

The results are depicted with notched box plot. Each notched box plot displays the

variation in the distribution of data based on some statistical summaries; the central

rectangle spanning the first quartile to the third quartile (the interquartile range

or IQR), the lines extending vertically from the hinge to the highest value (upper

whiskers) is within 1.5 times of IQR , the lower whisker extends from the hinge to

the lowest value within 1.5 times of IQR. Data beyond the end of the whiskers are
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outliers and are plotted as individual points. Additionally, the notch is a segment

around the median displaying the a confidence interval, with a height of 3.14 times

the height of the central box divided by the square root of the number of data

elements in the corresponding data distribution. The notch is useful for determining

whether two distributions are drawn from the same population. Similar notches of

boxes indicate that the data visualized by the boxes have the same distribution.

Besides, if the notches of two boxes do not overlap this is strong evidence that the

medians differ.

As shown in the case of both MDA and MDG, the positions of boxes referring

to intrinsic stability are always higher than that of perturbation stability in terms

of Spearman coefficient, Kuncheva index and Jaccard index, while the situation is

reversed in terms of MARD. However, the notches of boxes referring to intrinsic

stability overlap that of perturbation stability in some cases. For example, the over-

lap appears in terms of Kuncheva index for MDA, and the situation happens in

terms of Spearman coefficient. Additionally, some notches go outside the hinges,

such as the notches in terms MARD for both MDA and MDG, the notches in terms

of Spearman coefficient for MDG. This is because the size of the notch is bigger

than the interquartile range. In other words, the distributions of intrinsic stability

or perturbation stability are not symmetric but skewed. This finding reveals that

intrinsic stability or perturbation stability are not always normally distributed. Es-

pecially, the difference between the intrinsic stability and data-perturbation stability

on mushroom dataset are substantially small. Considering the unavoidable intrinsic

stability, the observation on mushroom dataset reveals that the major component

of data-perturbation stability of mushroom is intrinsic stability. The tendency of

splice dataset is similar to that of mushroom dataset. Comparatively, the gaps with

respect to mushroom dataset are substantially smaller than that of splice dataset.

The most obvious reason for the observation is the good characteristic of mush-

room, which has large sample size and high OOB accuracy. For the comparison of

MDA and MDG, the size of the box with respect to MDG in terms of MARD is

substantially larger than that of MDA. This observation reveals that there exists

high variability in the distributions of MDG.

Comparison of intrinsic stability and parameter-variation stability

In this section the magnitude of intrinsic stability is compared with that of

parameter-variations stability. Considering two parameters ntree and mtry are re-

quired for VIMs, the comparison is conducted from two aspects.

First, the comparison is carried out between the intrinsic stability and the ntree-

variations stability. To do so the parameter ntree takes 10 different values with the

range of (50, 100, 200, 500, 1000, 2000, 5000, 10000, 20000 and 50000). In this sce-

nario, the parameter mtry is set default def. Based on each ntree setting, the VIM

can be conducted. The 10 lists of feature importance scores are then used to com-

pute ntree-variation stability. For intrinsic stability, 10 repeated runs are executed

under each setting of ntree. The results of stability evaluation based on 10 different

settings of ntree are collected and then are averaged. The performance of stability

is presented by the distributions of all possible 45 points by pairwise computations.

The distributions are then depicted by notched box plot. For each dataset, the
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comparison of intrinsic stability and ntree-variations stability was conducted. The

results of all 19 datasets were illustrated. The results of MDA are displayed in Fig.

6 and the results of MDG can be found in Fig. 7.

It can be seen from Fig.6 and Fig.7, generally speaking the positions of boxes

referring to intrinsic stability are always higher than that of parameter stability

in terms of Spearman coefficient, Kuncheva index and Jaccard index, while the

situation is reversed in terms of MARD. Meanwhile, the notches of intrinsic stability

do no overlap that of ntree-variations stability. Additionally, some notches go outside

the hinges which reveals that the distribution of data is not symmetric but skewed.

But beyond that, a remarkable characteristic is that the sizes of box with respect

to ntree-variations stability are substantially larger than that of intrinsic stability.

This observation reveals that there exists high variability in the distributions of

ntree-variations stability.

Second, similar comparison is carried out between the intrinsic stability and mtry-

variations stability. To do so the parameter mtry changes its values: one, dwdef, def

and updef. The value of def means the square-root of the total number of features,

dwdef means a half of def, and updef means one and a half of def. In this scenario,

the value of ntree is set as default 20000. Similar computations are conducted to

get the results. The results of MDA are displayed in Fig. 8 and the results of MDG

can be found in Fig. 9.

It can be seen from Fig.8 and 9, generally speaking there is no any clear tendency

with respect to the positions and the overlap between boxes referring to intrinsic

stability and that of mtry-variations stability. Meanwhile, the notches of intrinsic

stability do no overlap that of mtry-variations stability. Additionally, the compar-

ison in terms of Spearman coefficient in case of both MDA and MDG, as well as

the comparison in term of MARD in case of MDA is obscure, which shows that the

positions of boxes referring to intrinsic stability are almost as high as that of param-

eter stability. Moreover, the notches of intrinsic stability and that of mtry-variations

stability are mutually overlapping.

Discussion
Experimental results show that intrinsic instability is prevalent across different

datasets. Particularly, the degree of intrinsic stability is dramatically low in the

case of gene expression datasets. The influence of parameter setting of VIMs on the

intrinsic stability is investigated and the observations and conclusions are presented

as follows:

(a) With the increase of ntree, the intrinsic stability gets better. Nevertheless, even

when ntree equal to 50000, the values of indices on most of the datasets are

still away from the preferred value 1. These observations lead to the conclusion

that intrinsic instability is inevitable, but can be reduced by a larger value of

ntree.

(b) There is no clear tendency of the distribution of intrinsic stability against dif-

ferent settings of mtry. This observation indicates that the setting of mtry is

not a solution to control the intrinsic instability.

With respect to four data-specific indicators, i.e., the number of features, the sam-

ple size, the number of classes and OOB accuracy, our observations and conclusions

are summarized as follows:



Huazhen et al. Page 13 of 24

(a) The relationships between #sample and intrinsic stability can not be observed.

For the #feature, there is a perfect monotone decreasing relationship, as well

as strong negative linear correlation with intrinsic stability on low-dimensional

datasets with a large number of samples. However, only #feature in case of

Spearman coefficient for MDA shows both negative monotonic correlation and

negative linear correlation on high dimensional datasets with small sample size.

This implies a complicated and ambiguous relationship between intrinsic sta-

bility and #feature for high dimensional and small sample datasets.

(b) Tests on the whole 19 datasets show that #feature and #sample have a cou-

pling effect on the intrinsic stability. The synthetic indictor #feature/#sample

performs both negative monotonic correlation and negative linear correlation

with the intrinsic stability. This implies that high dimensional and small sample

datasets are prone to intrinsic instability of VIMs. This effect may stem from

the intrinsic randomness in the mechanism of VIMs, the feature randomization

(random component 2 in Fig.1) for both MDA and MDG, as well as the feature

permutation (random component 3 in Fig.1) for MDA.

(c) Generally, the OOB accuracy have a clear monotonic correlation with the in-

trinsic stability. However, there is no linear correlation. This observation reveals

that data complexity does have impacts on the intrinsic stability.

(d) There is no significant correlation between the number of classes and the in-

trinsic stability.

Further, the magnitude of intrinsic stability is compared with that coming from

data perturbation or parameter variations. The observations and conclusions are

summarized as follows:

(a) The magnitude of intrinsic instability is generally smaller than that of data-

perturbation instability. This observation indicates that data-perturbation sta-

bility may contain intrinsic stability.

(b) The magnitude of intrinsic instability is significantly smaller than that of ntree-

variations instability. Moreover, the intrinsic stability has a dramatically smaller

variability than that of ntree-variability stability. It shows that the intrinsic

stability may be involved in the ntree-variations stability and VIMs is more

sensitive to the change of ntree.

(c) The magnitude of intrinsic stability is generally smaller than that of mtry-

variations stability. Nevertheless, there still exists the observation that intrinsic

stability and mtry-variations stability have nearly equal magnitude in terms

of Spearman coefficient. Besides both intrinsic stability and mtry-variations

stability have significantly low variability. These observations reveal that the

intrinsic stability is involved in the mtry-variations stability, but mtry has little

impact on the stability of VIMs.

Additionally, comparison of MDA and MDG exhibits a lot of similarities between

them. They both suffer from the issue of intrinsic stability. Comparatively, MDG

performs relatively high variability in terms of MARD while always making a con-

sistent conclusion with the stability indices based on feature ranking. The difference

between MDA and MDG lies in the degree of intrinsic stability. Nevertheless, from

an overall perspective, there is not any clear conclusion about which one is more

stable. The observation is consistent with previous studies. In the research of Calle
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and Urrea, MDG is more robust than MDA to small perturbations of the data [22].

However, Nicodemus, K.K concluded that MDG is inferior to MDA on artificial

datasets [23]. According to the mechanism of intrinsic randomness, the number of

random components in Fig.1 cannot completely depict the behavior of MDA and

MDG. Seemingly, MDG involves less random components than MDA. Whereas,

Fig.1 only focuses the breath of random components and does not consider the

intensity of each component. It is better to consider the quantity and intensity of

random components to evaluate the intrinsic stability of VIMs on different imple-

mentations.

Conclusion
In this paper, a new concept of intrinsic stability of variable importance measures

(VIMs) is introduced to concern the influence of intrinsic randomness in algorithm

design. The intrinsic stability in VIMs based on random forest MDA and MDG, are

comprehensively investigated which assesses the self-consistence between the feature

rankings of repeated runs. First, the prevalence of intrinsic stability of VIMs over

many real-world datasets demonstrates that the instability of VIMs not only comes

from data perturbations or parameter variations, but also stems from the intrinsic

randomness of VIMs. The fact that the magnitude of intrinsic stability is always

smaller than that of traditional stability indicates that the intrinsic stability is

implicitly involved in traditional stability. This finding gives a better understanding

of VIM stability, and may help reduce or eliminate the instability of VIMs. Studies

towards stable and robust VIMs without regard to the intrinsic randomness of VIMs

may not be likely to make any real progress. Second, by investigating the potential

affecting factors of intrinsic stability, users would be more aware of the risks and

hence more careful when using VIMs, especially on high-dimensional, small-sample

and high complexity datasets. In practice a large enough value of ntree is preferred.
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8. Altmann, A., Toloşi, L., Sander, O., Lengauer, T.: Permutation importance: a corrected feature importance

measure. Bioinformatics 26(10), 1340–1347 (2010)

9. Ma, D., Xiao, J., Li, Y., Diao, Y., Guo, Y., Li, M.: Feature importance analysis in guide strand identification of

micrornas. Computational biology and chemistry 35(3), 131–136 (2011)

10. Cao, D.-S., Liang, Y.-Z., Xu, Q.-S., Zhang, L.-X., Hu, Q.-N., Li, H.-D.: Feature importance sampling-based

adaptive random forest as a useful tool to screen underlying lead compounds. Journal of Chemometrics 25(4),

201–207 (2011)

11. Paul, J., Verleysen, M., Dupont, P., et al.: Identification of statistically significant features from random forests.

In: ECML Workshop on Solving Complex Machine Learning Problems with Ensemble Methods (2013)

12. Yu, L., Ding, C., Loscalzo, S.: Stable feature selection via dense feature groups. In: Proceedings of the 14th

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 803–811 (2008). ACM

13. Loscalzo, S., Yu, L., Ding, C.: Consensus group stable feature selection. In: Proceedings of the 15th ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 567–576 (2009). ACM

14. He, Z., Yu, W.: Stable feature selection for biomarker discovery. Computational biology and chemistry 34(4),

215–225 (2010)

15. Yu, L., Han, Y., Berens, M.E.: Stable gene selection from microarray data via sample weighting. IEEE/ACM

Transactions on Computational Biology and Bioinformatics (TCBB) 9(1), 262–272 (2012)

16. Han, Y., Yu, L.: A variance reduction framework for stable feature selection. Statistical Analysis and Data

Mining: The ASA Data Science Journal 5(5), 428–445 (2012)

17. Kamkar, I., Gupta, S.K., Phung, D., Venkatesh, S.: Stable feature selection for clinical prediction: Exploiting icd

tree structure using tree-lasso. Journal of biomedical informatics (2014)

18. Park, C.H., Kim, S.B.: Sequential random k-nearest neighbor feature selection for high-dimensional data.

Expert Systems with Applications 42(5), 2336–2342 (2015)

19. Kalousis, A., Prados, J., Hilario, M.: Stability of feature selection algorithms: a study on high-dimensional

spaces. Knowledge and information systems 12(1), 95–116 (2007)

20. Haury, A.-C., Gestraud, P., Vert, J.-P.: The influence of feature selection methods on accuracy, stability and

interpretability of molecular signatures. PloS one 6(12), 28210 (2011)

21. Kim, S.-Y.: Effects of sample size on robustness and prediction accuracy of a prognostic gene signature. BMC

bioinformatics 10(1), 147 (2009)

22. Calle, M.L., Urrea, V.: Letter to the editor: Stability of random forest importance measures. Briefings in

bioinformatics 12(1), 86–89 (2011)

23. Nicodemus, K.K.: Letter to the editor: On the stability and ranking of predictors from random forest variable

importance measures. Briefings in bioinformatics, 016 (2011)

24. Verikas, A., Gelzinis, A., Bacauskiene, M.: Mining data with random forests: A survey and results of new tests.

Pattern Recognition 44(2), 330–349 (2011)

25. Kursa, M.B.: Robustness of random forest-based gene selection methods. BMC bioinformatics 15(1), 8 (2014)

26. Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene selection for cancer classification using support vector

machines. Machine learning 46(1-3), 389–422 (2002)

27. Zhang, Y., Ding, C., Li, T.: Gene selection algorithm by combining relieff and mrmr. BMC genomics 9(Suppl

2), 27 (2008)

28. Wang, H., Wang, C., Lv, B., Pan, X.: Improved variable importance measure of random forest via combining of

proximity measure and support vector machine for stable feature selection. Journal of Information and

Computational Science 12(8), 3241–3252 (2015). doi:10.12733/jics20105854

29. Boulesteix, A.-L., Bender, A., Bermejo, J.L., Strobl, C.: Random forest gini importance favours snps with large

minor allele frequency: impact, sources and recommendations. Brief Bioinform 13(3), 292–304 (2012)

30. Genuer, R.: Variance reduction in purely random forests. Journal of Nonparametric Statistics 24(3), 543–562

(2012)

31. Cadenas, J.M., Garrido, M.C., Mart́ıNez, R.: Feature subset selection filter–wrapper based on low quality data.

Expert Systems with Applications 40(16), 6241–6252 (2013)

32. Kulkarni, V.Y., Sinha, P.K.: Random forest classifiers: a survey and future research directions. Int. J. Adv.

Comput 36(1), 1144–1153 (2013)

33. Kuncheva, L.I.: A stability index for feature selection. In: Artificial Intelligence and Applications, pp. 421–427

(2007)

34. Alelyani, S., Zhao, Z., Liu, H.: A dilemma in assessing stability of feature selection algorithms. In: High

Performance Computing and Communications (HPCC), 2011 IEEE 13th International Conference On, pp.

701–707 (2011). IEEE

35. Fagin, R., Kumar, R., Sivakumar, D.: Comparing top k lists. SIAM Journal on Discrete Mathematics 17(1),

134–160 (2003)

36. Boulesteix, A.-L., Slawski, M.: Stability and aggregation of ranked gene lists. Briefings in bioinformatics 10(5),

556–568 (2009)

37. Fieller, E.C., Hartley, H.O., Pearson, E.S.: Tests for rank correlation coefficients. i. Biometrika, 470–481 (1957)

38. Hamers, L., Hemeryck, Y., Herweyers, G., Janssen, M., Keters, H., Rousseau, R., Vanhoutte, A.: Similarity

measures in scientometric research: the jaccard index versus salton’s cosine formula. Information Processing &

Management 25(3), 315–318 (1989)

39. Pleus, S., Schmid, C., Link, M., Zschornack, E., Klötzer, H.-M., Haug, C., Freckmann, G.: Performance

evaluation of a continuous glucose monitoring system under conditions similar to daily life. Journal of diabetes

science and technology 7(4), 833–841 (2013)



Huazhen et al. Page 16 of 24

40. Statnikov, A., Tsamardinos, I., Dosbayev, Y., Aliferis, C.F.: Gems: a system for automated cancer diagnosis and

biomarker discovery from microarray gene expression data. International journal of medical informatics 74(7),

491–503 (2005)

41. Ho, T.K.: A data complexity analysis of comparative advantages of decision forest constructors. Pattern

Analysis and Applications 5(2), 102–112 (2002)

42. Liaw, A., Wiener, M.: The randomForest package. Software manual (2003)

Figures

Random

component 
1

Sample Data
Using bagging method

Out-of-bag(OOB)

estimate the OOB error of the grown tree

Train Data
Dataset to grow the beta tree

Random features selection
Using randomization method 

Grow tree
split data using the best features

Estimate OOB error
applying OOB data on the beta tree

Feature permutation
Permutate each of feature respectively on the OOB data 

Feature importance computation
average the error difference between the two over all trees 

Estimate permutated OOB error
applying permutated OOB data on the beta tree

Random 

component 

2

Random 

component 

3

MDA

Feature importance computation
average the decrease in node impurities over all trees

MDG

Figure 1 Visualization of random components involved in the procedures of MDG and MDA
The distribution of random components of VIMs is eloquently visualized to understand the source of intrinsic

randomness of VIMs.

Tables

Table 1 Characteristics of datasets used in experiments

ID dataset domain #feature #sample #class OOB accuracy

1 yeast biology 8 1484 10 0.98
2 glass Physical 9 240 6 0.79
3 vote social 16 232 2 0.97
4 segment image 19 2310 7 0.98
5 mushroom biology 20 8124 2 1.00
6 soybean biology 35 307 19 0.93
7 splice biology 60 3175 4 0.43
8 sonar Physical 60 208 2 0.85
9 Madelon artificial 500 2600 2 0.73

10 SRBCT biology 2308 83 4 1.00
11 Leukemia1 biology 5327 72 3 0.94
12 DLBCL biology 5469 77 2 0.83
13 Tumors 9 biology 5726 60 9 0.51
14 Brain Tumor1 biology 5920 90 5 0.83
15 Arcene biology 10000 100 2 0.79
16 Brain Tumor2 biology 10367 50 4 0.74
17 Prostate Tumor biology 10509 102 2 0.92
18 Tumors 11 biology 12533 174 11 0.88
19 Lung Cancer biology 12600 203 5 0.92
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Table 2 The performance of intrinsic stability of MDA

Spearman coefficient Jaccard index Kuncheva index MARD

Mean Variance Mean Variance Mean Variance Mean Variance
yeast 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 0.0076 0.0000
glass 0.8756 0.0181 0.9852 0.0003 0.9708 0.0010 0.0077 0.0000
vote 0.9851 0.0004 0.9909 0.0001 0.9866 0.0002 0.0270 0.0003
segment 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 0.0110 0.0000
mushroom 0.9628 0.0025 0.9925 0.0001 0.9910 0.0001 0.0134 0.0000
soybean 0.9628 0.0025 0.9925 0.0001 0.9910 0.0001 0.0134 0.0000
splice 0.4712 0.0162 0.9651 0.0000 0.9548 0.0001 0.0107 0.0000
sonar 0.6107 0.0170 0.9672 0.0000 0.9509 0.0001 0.2936 2.8892
Madelon 0.1675 0.0104 0.7306 0.0002 0.8072 0.0002 0.4387 2.1041
SRBCT 0.1397 0.0078 0.9103 0.0001 0.9496 0.0000 0.0683 0.0000
Leukemia1 0.1282 0.0087 0.8864 0.0001 0.9370 0.0000 0.0963 0.0001
DLBCL 0.0809 0.0067 0.8333 0.0001 0.9059 0.0000 0.1402 0.0001
Tumors 9 0.0665 0.0084 0.7519 0.0003 0.8528 0.0001 0.1608 0.0002
Brain Tumor1 0.0176 0.0094 0.8182 0.0002 0.8956 0.0001 0.1148 0.0001
Arcene 0.0453 0.0085 0.7563 0.0003 0.8574 0.0001 0.2283 0.0003
Brain Tumor2 0.0427 0.0084 0.7378 0.0002 0.8361 0.0001 0.1637 0.0001
Prostate Tumor 0.0437 0.0115 0.8826 0.0001 0.9362 0.0000 0.1170 0.0001
Tumors 11 0.0134 0.0111 0.8168 0.0002 0.8945 0.0001 0.0808 0.0000
Lung Cancer 0.0220 0.0146 0.7839 0.0002 0.8745 0.0001 0.0906 0.0001

Table 3 The performance of intrinsic stability of MDG

Spearman coefficient Jaccard index Kuncheva index MARD

Mean Variance Mean Variance Mean Variance Mean Variance
yeast 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 0.0042 0.0000
glass 0.9763 0.0010 0.9887 0.0002 0.9778 0.0009 0.0040 0.0000
vote 0.8408 0.0222 0.9927 0.0001 0.9587 0.0014 0.0161 0.0000
segment 0.9944 0.0001 0.9974 0.0000 0.9975 0.0000 0.0083 0.0000
mushroom 0.9601 0.0014 0.9852 0.0002 0.9857 0.0002 0.0141 0.0000
soybean 0.9601 0.0014 0.9852 0.0002 0.9857 0.0002 0.0141 0.0000
splice 0.5471 0.0073 0.9380 0.0001 0.9355 0.0001 0.0022 0.0000
sonar 0.8273 0.0030 0.9733 0.0000 0.9643 0.0001 0.0172 0.0000
Madelon 0.2731 0.0082 0.9158 0.0001 0.9481 0.0000 0.0145 0.0000
SRBCT 0.1154 0.0103 0.9067 0.0001 0.9469 0.0001 0.0596 0.0000
Leukemia1 0.0329 0.0086 0.8684 0.0002 0.9258 0.0001 0.0864 0.0001
DLBCL 0.0832 0.0089 0.8295 0.0001 0.9025 0.0000 0.1036 0.0000
Tumors 9 0.0655 0.0128 0.7753 0.0002 0.8694 0.0001 0.0894 0.0001
Brain Tumor1 0.0085 0.0107 0.8003 0.0001 0.8828 0.0001 0.0970 0.0000
Arcene 0.0342 0.0115 0.7803 0.0002 0.8729 0.0001 0.1549 0.0001
Brain Tumor2 0.0297 0.0120 0.7328 0.0003 0.8396 0.0001 0.1262 0.0001
Prostate Tumor 0.0796 0.0120 0.8580 0.0002 0.9211 0.0001 0.0985 0.0001
Tumors 11 0.0761 0.0143 0.8052 0.0003 0.8877 0.0001 0.0744 0.0000
Lung Cance 0.0421 0.0101 0.7538 0.0003 0.8547 0.0002 0.0905 0.0000

Table 4 The correlation between datasets indicators and intrinsic stability in datasets(a)

coefficient dataset indicators Spearman coefficient Jaccard index Kuncheva index MARD
estimate p.value estimate p.value estimate p.value estimate p.value

Spearman

#feature(MDA) -0.7848 0.0122 -0.7004 0.0356 -0.7004 0.0356 0.6891 0.0401
#feature(MDG) -0.8571 0.0031 -0.9244 0.0004 -0.6387 0.0641 0.3445 0.3639
#sample(MDA) -0.1345 0.7302 0.0168 0.9658 0.1345 0.7302 -0.1590 0.6828
#sample(MDG) -0.0921 0.8138 -0.2594 0.5003 -0.0084 0.9830 -0.4435 0.2318

Pearson

#feature(MDA) -0.8346 0.0051 -0.9972 0.0000 -0.9755 0.0000 0.8511 0.0036
#feature(MDG) -0.8677 0.0024 -0.8289 0.0058 -0.4856 0.1851 0.2730 0.4772
#sample(MDA) -0.0319 0.9350 -0.0606 0.8769 -0.0157 0.9681 -0.0966 0.8047
#sample(MDG) -0.0769 0.8441 -0.1563 0.6880 0.0520 0.8942 0.0058 0.9883
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Table 5 The correlation between datasets indicators and intrinsic stability in datasets(b)

coefficient dataset indicators Spearman coefficient Jaccard index Kuncheva index MARD
estimate p.value estimate p.value estimate p.value estimate p.value

Spearman

#feature(MDA) -0.8424 0.0045 -0.5030 0.1434 -0.5030 0.1434 0.0424 0.9186
#feature(MDG) -0.1879 0.6076 -0.5758 0.0878 -0.5758 0.0878 0.2606 0.4697
#sample(MDA) -0.5152 0.1328 0.1636 0.6567 0.1636 0.6567 -0.4424 0.2042
#sample(MDG) 0.2121 0.5599 0.0667 0.8648 0.0667 0.8648 -0.1152 0.7588

Pearson

#feature(MDA) -0.7873 0.0069 -0.4687 0.1718 -0.4535 0.1880 0.1424 0.6946
#feature(MDG) -0.2785 0.4359 -0.6094 0.0615 -0.5942 0.0701 0.3507 0.3205
#sample(MDA) -0.5141 0.1284 -0.0242 0.9471 0.0126 0.9725 -0.4052 0.2453
#sample(MDG) 0.0359 0.9216 -0.1836 0.6117 -0.1733 0.6321 -0.2310 0.5207

Table 6 The correlation between the dataset indicators and intrinsic stability on whole datasets for
MDA

coefficient dataset indicators Spearman coefficient Jaccard index Kuncheva index MARD
estimate p.value estimate p.value estimate p.value estimate p.value

Spearman

#feature/#sample -0.8227 0.0000 -0.7717 0.0001 -0.7805 0.0001 0.7196 0.0005
#classes 0.0162 0.9474 0.1868 0.4438 0.1976 0.4173 -0.5079 0.0264
OOB accuracy 0.4289 0.0669 0.6639 0.0019 0.6498 0.0026 -0.4701 0.0423

Pearson

#feature/#sample -0.7187 0.0005 -0.7212 0.0005 -0.6408 0.0031 0.2260 0.3522
#classes 0.2913 0.2263 0.2038 0.4028 0.2428 0.3166 -0.3893 0.0995
OOB accuracy 0.3246 0.1751 0.3903 0.0985 0.4815 0.0368 -0.2814 0.2432

Table 7 The correlation between the dataset indicators and intrinsic stability on whole datasets for
MDG

coefficient dataset indicators Spearman coefficient Jaccard index Kuncheva index MARD
estimate p.value estimate p.value estimate p.value estimate p.value

Spearman

#feature/#sample -0.8583 0.0000 -0.8530 0.0000 -0.8425 0.0000 0.8969 0.0000
#classes 0.1524 0.5333 0.0649 0.7917 0.0902 0.7134 -0.3175 0.1853
OOB accuracy 0.4006 0.0892 0.4930 0.0320 0.5387 0.0173 -0.2230 0.3589

Pearson

#feature/#sample -0.7503 0.0002 -0.8641 0.0000 -0.8426 0.0000 0.8790 0.0000
#classes 0.2843 0.2381 0.1416 0.5630 0.1918 0.4315 -0.2371 0.3283
OOB accuracy 0.2622 0.2782 0.3188 0.1833 0.3989 0.0907 -0.1025 0.6762
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Figure 2 Influence of the setting of parameter ntree on the intrinsic stability
For each dataset, the distribution of intrinsic stability against different values of ntree are illustrated.
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Figure 3 Influence of the setting of parameter mtry on the intrinsic stability
For each dataset, the distribution of intrinsic stability against different values of mtry are illustrated.
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Figure 4 Comparison of intrinsic stability and data-perturbation stability with respect to MDA
For each dataset, a comparison of the distributions of two kinds of stability is presented, one comes from

intrinsic stability and the other refers to data-perturbation stability. The distribution is depicted by the notched

box which focuses on the variation in the distribution.
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Figure 5 Comparison of intrinsic stability and data-perturbation stability with respect to MDG
For each dataset, a comparison of the distributions of two kinds of stability is presented, one comes from

intrinsic stability and the other refers to data-perturbation stability. The distribution is depicted by the notched

box which focuses on the variation in the distribution.
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Figure 6 Comparison of intrinsic stability and ntree-variations stability with respect to MDA
For each dataset, a comparison of the distributions of two kinds of stability is presented, one comes from

intrinsic stability and the other refers to ntree-variations stability. The distribution is depicted by the notched

box which focuses on the variation in the distribution.
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Figure 7 Comparison of intrinsic stability and ntree-variations stability with respect to MDG
For each dataset, a comparison of the distributions of two kinds of stability is presented one comes from

intrinsic stability and the other refers to ntree-variations stability. The distribution is depicted by the notched

box which focuses on the variation in the distribution.
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Figure 8 Comparison of intrinsic stability and mtry-variations stability with respect to MDA
For each dataset, a comparison of the distributions of two kinds of stability is presented, one comes from

intrinsic stability and the other refers to mtry-variations stability. The distribution is depicted by the notched

box which focuses on the variation in the distribution.
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Figure 9 Comparison of intrinsic stability and mtry-variations stability with respect to MDG
For each dataset, a comparison of the distributions of two kinds of stability is presented, one comes from

intrinsic stability and the other refers to mtry-variations stability. The distribution is depicted by the notched

box which focuses on the variation in the distribution.


