139 research outputs found

    Decapitation in Rats: Latency to Unconsciousness and the ‘Wave of Death’

    Get PDF
    The question whether decapitation is a humane method of euthanasia in awake animals is being debated. To gather arguments in this debate, obsolete rats were decapitated while recording the EEG, both of awake rats and of anesthetized rats. Following decapitation a fast and global loss of power of the EEG was observed; the power in the 13–100 Hz frequency band, expressing cognitive activity, decreased according to an exponential decay function to half the initial value within 4 seconds. Whereas the pre-decapitation EEG of the anesthetized animals showed a burst suppression pattern quite different from the awake animals, the power in the postdecapitation EEG did not differ between the two groups. This might indicate that either the power of the EEG does not correlate well with consciousness or that consciousness is briefly regained in the anesthetized group after decapitation. Remarkably, after 50 seconds (awake group) or 80 seconds (anesthetized group) following decapitation, a high amplitude slow wave was observed. The EEG before this wave had more power than the signal after the wave. This wave might be due to a simultaneous massive loss of membrane potentials of the neurons. Still functioning ion channels, which keep the membrane potential intact before the wave, might explain the observed power difference. Two conclusions were drawn from this experiment. It is likely that consciousness vanishes within seconds after decapitation, implying that decapitation is a quick and not an inhumane method of euthanasia. It seems that the massive wave which can be recorded approximately one minute after decapitation reflects the ultimate border between life and death. This observation might have implications in the discussions on the appropriate time for organ donation

    Persistent Hyperdopaminergia Decreases the Peak Frequency of Hippocampal Theta Oscillations during Quiet Waking and REM Sleep

    Get PDF
    Long-term changes in dopaminergic signaling are thought to underlie the pathophysiology of a number of psychiatric disorders. Several conditions are associated with cognitive deficits such as disturbances in attention processes and learning and memory, suggesting that persistent changes in dopaminergic signaling may alter neural mechanisms underlying these processes. Dopamine transporter knockout (DAT-KO) mice exhibit a persistent five-fold increase in extracellular dopamine levels. Here, we demonstrate that DAT-KO mice display lower hippocampal theta oscillation frequencies during baseline periods of waking and rapid-eye movement sleep. These altered theta oscillations are not reversed via treatment with the antidopaminergic agent haloperidol. Thus, we propose that persistent hyperdopaminergia, together with secondary alterations in other neuromodulatory systems, results in lower frequency activity in neural systems responsible for various cognitive processes

    Brains swinging in concert: cortical phase synchronization while playing guitar

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Brains interact with the world through actions that are implemented by sensory and motor processes. A substantial part of these interactions consists in synchronized goal-directed actions involving two or more individuals. Hyperscanning techniques for assessing fMRI simultaneously from two individuals have been developed. However, EEG recordings that permit the assessment of synchronized neuronal activities at much higher levels of temporal resolution have not yet been simultaneously assessed in multiple individuals and analyzed in the time-frequency domain. In this study, we simultaneously recorded EEG from the brains of each of eight pairs of guitarists playing a short melody together to explore the extent and the functional significance of synchronized cortical activity in the course of interpersonally coordinated actions.</p> <p>Results</p> <p>By applying synchronization algorithms to intra- and interbrain analyses, we found that phase synchronization both within and between brains increased significantly during the periods of (i) preparatory metronome tempo setting and (ii) coordinated play onset. Phase alignment extracted from within-brain dynamics was related to behavioral play onset asynchrony between guitarists.</p> <p>Conclusion</p> <p>Our findings show that interpersonally coordinated actions are preceded and accompanied by between-brain oscillatory couplings. Presumably, these couplings reflect similarities in the temporal properties of the individuals' percepts and actions. Whether between-brain oscillatory couplings play a causal role in initiating and maintaining interpersonal action coordination needs to be clarified by further research.</p

    Hippocampal state-dependent behavioral reflex to an identical sensory input in rats.

    Get PDF
    We examined the local field potential of the hippocampus to monitor brain states during a conditional discrimination task, in order to elucidate the relationship between ongoing brain states and a conditioned motor reflex. Five 10-week-old Wistar/ST male rats underwent a serial feature positive conditional discrimination task in eyeblink conditioning using a preceding light stimulus as a conditional cue for reinforced trials. In this task, a 2-s light stimulus signaled that the following 350-ms tone (conditioned stimulus) was reinforced with a co-terminating 100-ms periorbital electrical shock. The interval between the end of conditional cue and the onset of the conditioned stimulus was 4±1 s. The conditioned stimulus was not reinforced when the light was not presented. Animals successfully utilized the light stimulus as a conditional cue to drive differential responses to the identical conditioned stimulus. We found that presentation of the conditional cue elicited hippocampal theta oscillations, which persisted during the interval of conditional cue and the conditioned stimulus. Moreover, expression of the conditioned response to the tone (conditioned stimulus) was correlated with the appearance of theta oscillations immediately before the conditioned stimulus. These data support hippocampal involvement in the network underlying a conditional discrimination task in eyeblink conditioning. They also suggest that the preceding hippocampal activity can determine information processing of the tone stimulus in the cerebellum and its associated circuits

    Reduction of EEG Theta Power and Changes in Motor Activity in Rats Treated with Ceftriaxone

    Get PDF
    The glutamate transporter GLT-1 is responsible for the largest proportion of total glutamate transport. Recently, it has been demonstrated that ceftriaxone (CEF) robustly increases GLT-1 expression. In addition, physiological studies have shown that GLT-1 up-regulation strongly affects synaptic plasticity, and leads to an impairment of the prepulse inhibition, a simple form of information processing, thus suggesting that GLT-1 over-expression may lead to dysfunctions of large populations of neurons. To test this possibility, we assessed whether CEF affects cortical electrical activity by using chronic electroencephalographic (EEG) recordings in male WKY rats. Spectral analysis showed that 8 days of CEF treatment resulted in a delayed reduction in EEG theta power (7–9 Hz) in both frontal and parietal derivations. This decrease peaked at day 10, i.e., 2 days after the end of treatment, and disappeared by day 16. In addition, we found that the same CEF treatment increased motor activity, especially when EEG changes are more prominent. Taken together, these data indicate that GLT-1 up-regulation, by modulating glutamatergic transmission, impairs the activity of widespread neural circuits. In addition, the increased motor activity and prepulse inhibition alterations previously described suggest that neural circuits involved in sensorimotor control are particularly sensitive to GLT-1 up-regulation

    Cyclic and Sleep-Like Spontaneous Alternations of Brain State Under Urethane Anaesthesia

    Get PDF
    Background: Although the induction of behavioural unconsciousness during sleep and general anaesthesia has been shown to involve overlapping brain mechanisms, sleep involves cyclic fluctuations between different brain states known as active (paradoxical or rapid eye movement: REM) and quiet (slow-wave or non-REM: nREM) stages whereas commonly used general anaesthetics induce a unitary slow-wave brain state. Methodology/Principal Findings: Long-duration, multi-site forebrain field recordings were performed in urethaneanaesthetized rats. A spontaneous and rhythmic alternation of brain state between activated and deactivated electroencephalographic (EEG) patterns was observed. Individual states and their transitions resembled the REM/nREM cycle of natural sleep in their EEG components, evolution, and time frame (,11 minute period). Other physiological variables such as muscular tone, respiration rate, and cardiac frequency also covaried with forebrain state in a manner identical to sleep. The brain mechanisms of state alternations under urethane also closely overlapped those of natural sleep in their sensitivity to cholinergic pharmacological agents and dependence upon activity in the basal forebrain nuclei that are the major source of forebrain acetylcholine. Lastly, stimulation of brainstem regions thought to pace state alternations in sleep transiently disrupted state alternations under urethane. Conclusions/Significance: Our results suggest that urethane promotes a condition of behavioural unconsciousness tha

    Comparison of Therapeutic Effects between Pulsed and Continuous Wave 810-nm Wavelength Laser Irradiation for Traumatic Brain Injury in Mice

    Get PDF
    Background and Objective Transcranial low-level laser therapy (LLLT) using near-infrared light can efficiently penetrate through the scalp and skull and could allow non-invasive treatment for traumatic brain injury (TBI). In the present study, we compared the therapeutic effect using 810-nm wavelength laser light in continuous and pulsed wave modes in a mouse model of TBI. Study Design/Materials and Methods TBI was induced by a controlled cortical-impact device and 4-hours post-TBI 1-group received a sham treatment and 3-groups received a single exposure to transcranial LLLT, either continuous wave or pulsed at 10-Hz or 100-Hz with a 50% duty cycle. An 810-nm Ga-Al-As diode laser delivered a spot with diameter of 1-cm onto the injured head with a power density of 50-mW/cm2 for 12-minutes giving a fluence of 36-J/cm2. Neurological severity score (NSS) and body weight were measured up to 4 weeks. Mice were sacrificed at 2, 15 and 28 days post-TBI and the lesion size was histologically analyzed. The quantity of ATP production in the brain tissue was determined immediately after laser irradiation. We examined the role of LLLT on the psychological state of the mice at 1 day and 4 weeks after TBI using tail suspension test and forced swim test. Results The 810-nm laser pulsed at 10-Hz was the most effective judged by improvement in NSS and body weight although the other laser regimens were also effective. The brain lesion volume of mice treated with 10-Hz pulsed-laser irradiation was significantly lower than control group at 15-days and 4-weeks post-TBI. Moreover, we found an antidepressant effect of LLLT at 4-weeks as shown by forced swim and tail suspension tests. Conclusion The therapeutic effect of LLLT for TBI with an 810-nm laser was more effective at 10-Hz pulse frequency than at CW and 100-Hz. This finding may provide a new insight into biological mechanisms of LLLT.National Institutes of Health (U.S.) (NIH grant R01AI050875)Center for Integration of Medicine and Innovative Technology (DAMD17-02-2-0006)United States. Dept. of Defense. Congressionally Directed Medical Research Programs (W81XWH-09-1-0514)United States. Air Force Office of Scientific Research (Military Photomedicine Program (FA9950-04-1-0079))Japan. Ministry of Education, Culture, Sports, Science and TechnologyJapan Society for the Promotion of Scienc

    NMDA Receptor Hypofunction Leads to Generalized and Persistent Aberrant γ Oscillations Independent of Hyperlocomotion and the State of Consciousness

    Get PDF
    International audienceNMDAr antagonists acutely produces, in the rodent CNS, generalized aberrant gamma oscillations, which are not dependent on hyperlocomotion-related brain state or conscious sensorimotor processing. These findings suggest that NMDAr hypofunction-related generalized gamma hypersynchronies represent an aberrant diffuse network noise, a potential electrophysiological correlate of a psychotic-like state. Such generalized noise might cause dysfunction of brain operations, including the impairments in cognition and sensorimotor integration seen in schizophrenia
    corecore