84 research outputs found
Computational and phylogenetic validation of nematode horizontal gene transfer
Sequencing of expressed genes has shown that nematodes, particularly the plant-parasitic nematodes, have genes purportedly acquired from other kingdoms by horizontal gene transfer. The prevailing orthodoxy is that such transfer has been a driving force in the evolution of niche specificity, and a recent paper in BMC Evolutionary Biology that presents a detailed phylogenetic analysis of cellulase genes in the free-living nematode Pristionchus pacificus at the species, genus and family levels substantiates this hypothesis
The <i>Pratylenchus penetrans</i> transcriptome as a source for the development of alternative control strategies:mining for putative genes involved in parasitism and evaluation of <i>in planta</i> RNAi
The root lesion nematode Pratylenchus penetrans is considered one of the most economically important species within the genus. Host range studies have shown that nearly 400 plant species can be parasitized by this species. To obtain insight into the transcriptome of this migratory plant-parasitic nematode, we used Illumina mRNA sequencing analysis of a mixed population, as well as nematode reads detected in infected soybean roots 3 and 7 days after nematode infection. Over 140 million paired end reads were obtained for this species, and de novo assembly resulted in a total of 23,715 transcripts. Homology searches showed significant hit matches to 58% of the total number of transcripts using different protein and EST databases. In general, the transcriptome of P. penetrans follows common features reported for other root lesion nematode species. We also explored the efficacy of RNAi, delivered from the host, as a strategy to control P. penetrans, by targeted knock-down of selected nematode genes. Different comparisons were performed to identify putative nematode genes with a role in parasitism, resulting in the identification of transcripts with similarities to other nematode parasitism genes. Focusing on the predicted nematode secreted proteins found in this transcriptome, we observed specific members to be up-regulated at the early time points of infection. In the present study, we observed an enrichment of predicted secreted proteins along the early time points of parasitism by this species, with a significant number being pioneer candidate genes. A representative set of genes examined using RT-PCR confirms their expression during the host infection. The expression patterns of the different candidate genes raise the possibility that they might be involved in critical steps of P. penetrans parasitism. This analysis sheds light on the transcriptional changes that accompany plant infection by P. penetrans, and will aid in identifying potential gene targets for selection and use to design effective control strategies against root lesion nematodes
Comparative genomics of the major parasitic worms
Parasitic nematodes (roundworms) and platyhelminths (flatworms) cause debilitating chronic infections of humans and animals, decimate crop production and are a major impediment to socioeconomic development. Here we report a broad comparative study of 81 genomes of parasitic and non-parasitic worms. We have identified gene family births and hundreds of expanded gene families at key nodes in the phylogeny that are relevant to parasitism. Examples include gene families that modulate host immune responses, enable parasite migration though host tissues or allow the parasite to feed. We reveal extensive lineage-specific differences in core metabolism and protein families historically targeted for drug development. From an in silico screen, we have identified and prioritized new potential drug targets and compounds for testing. This comparative genomics resource provides a much-needed boost for the research community to understand and combat parasitic worms
Determination of Preferred pH for Root-knot Nematode Aggregation Using Pluronic F-127 Gel
Root-knot nematodes (Meloidogyne spp.) are obligate endoparasites of a wide range of plant species. The infective stage is attracted strongly to and enters host roots at the zone of elongation, but the compounds responsible for this attraction have not been identified. We developed a simple assay to investigate nematode response to chemical gradients that uses Pluronic F-127, a synthetic block copolymer that, as a 23% aqueous solution, forms a liquid at low temperature and a gel at room temperature. Test chemicals are put into a modified pipette tip, or ‘chemical dispenser,’ and dispensers are inserted into the gel in which nematodes have been dispersed. Meloidogyne hapla is attracted to pH gradients formed by acetic acid and several other Brønsted acids and aggregates between pH 4.5 and 5.4. While this pH range was attractive to all tested root-knot nematode strains and species, the level of aggregation depended on the species/strain assessed. For actively growing roots, the pH at the root surface is most acidic at the zone of elongation. This observation is consistent with the idea that low pH is an attractant for nematodes. Root-knot nematodes have been reported to be attracted to carbon dioxide, but our experiments suggest that the observed attraction may be due to acidification of solutions by dissolved CO2 rather than to CO2 itself. These results suggest that Pluronic F-127 gel will be broadly applicable for examining responses of a range of organisms to chemical gradients or to each other
Root-Knot Nematodes Exhibit Strain-Specific Clumping Behavior That Is Inherited as a Simple Genetic Trait
Root-knot nematodes are obligate parasites of a wide range of plant species and can feed only on the cytoplasm of living plant cells. In the absence of a suitable plant host, infective juveniles of strain VW9 of the Northern root-knot nematode, Meloidogyne hapla, when dispersed in Pluronic F-127 gel, aggregate into tight, spherical clumps containing thousands of worms. Aggregation or clumping behavior has been observed in diverse genera in the phylum Nematoda spanning free-living species such as Caenorhabditis elegans as well as both plant and animal parasites. Clumping behavior differs between strains of M. hapla and occurs with other species within this genus where strain-specific differences in clumping ability are also apparent. Exposure of M. hapla juveniles to a gradient formed using low levels of cyanide promotes formation of clumps at a preferred cyanide level. Analysis of F2 lines from a cross of M. hapla strains that differ in clump-forming behavior reveals that the behavior segregates as a single, major locus that can be positioned on the genetic map of this nematode. Clumping behavior may be a survival strategy whose importance and function depend on the niche of the nematode strain or species
Horizontal gene transfer of microbial cellulases into nematode genomes is associated with functional assimilation and gene turnover
<p>Abstract</p> <p>Background</p> <p>Natural acquisition of novel genes from other organisms by horizontal or lateral gene transfer is well established for microorganisms. There is now growing evidence that horizontal gene transfer also plays important roles in the evolution of eukaryotes. Genome-sequencing and EST projects of plant and animal associated nematodes such as <it>Brugia</it>, <it>Meloidogyne</it>, <it>Bursaphelenchus </it>and <it>Pristionchus </it>indicate horizontal gene transfer as a key adaptation towards parasitism and pathogenicity. However, little is known about the functional activity and evolutionary longevity of genes acquired by horizontal gene transfer and the mechanisms favoring such processes.</p> <p>Results</p> <p>We examine the transfer of cellulase genes to the free-living and beetle-associated nematode <it>Pristionchus pacificus</it>, for which detailed phylogenetic knowledge is available, to address predictions by evolutionary theory for successful gene transfer. We used transcriptomics in seven <it>Pristionchus </it>species and three other related diplogastrid nematodes with a well-defined phylogenetic framework to study the evolution of ancestral cellulase genes acquired by horizontal gene transfer. We performed intra-species, inter-species and inter-genic analysis by comparing the transcriptomes of these ten species and tested for cellulase activity in each species. Species with cellulase genes in their transcriptome always exhibited cellulase activity indicating functional integration into the host's genome and biology. The phylogenetic profile of cellulase genes was congruent with the species phylogeny demonstrating gene longevity. Cellulase genes show notable turnover with elevated birth and death rates. Comparison by sequencing of three selected cellulase genes in 24 natural isolates of <it>Pristionchus pacificus </it>suggests these high evolutionary dynamics to be associated with copy number variations and positive selection.</p> <p>Conclusion</p> <p>We could demonstrate functional integration of acquired cellulase genes into the nematode's biology as predicted by theory. Thus, functional assimilation, remarkable gene turnover and selection might represent key features of horizontal gene transfer events in nematodes.</p
Introgression of Ivermectin Resistance Genes into a Susceptible Haemonchus contortus Strain by Multiple Backcrossing
Anthelmintic drug resistance in livestock parasites is already widespread and in recent years there has been an increasing level of anthelmintic drug selection pressure applied to parasitic nematode populations in humans leading to concerns regarding the emergence of resistance. However, most parasitic nematodes, particularly those of humans, are difficult experimental subjects making mechanistic studies of drug resistance extremely difficult. The small ruminant parasitic nematode Haemonchus contortus is a more amenable model system to study many aspects of parasite biology and investigate the basic mechanisms and genetics of anthelmintic drug resistance. Here we report the successful introgression of ivermectin resistance genes from two independent ivermectin resistant strains, MHco4(WRS) and MHco10(CAVR), into the susceptible genome reference strain MHco3(ISE) using a backcrossing approach. A panel of microsatellite markers were used to monitor the procedure. We demonstrated that after four rounds of backcrossing, worms that were phenotypically resistant to ivermectin had a similar genetic background to the susceptible reference strain based on the bulk genotyping with 18 microsatellite loci and individual genotyping with a sub-panel of 9 microsatellite loci. In addition, a single marker, Hcms8a20, showed evidence of genetic linkage to an ivermectin resistance-conferring locus providing a starting point for more detailed studies of this genomic region to identify the causal mutation(s). This work presents a novel genetic approach to study anthelmintic resistance and provides a “proof-of-concept” of the use of forward genetics in an important model strongylid parasite of relevance to human hookworms. The resulting strains provide valuable resources for candidate gene studies, whole genome approaches and for further genetic analysis to identify ivermectin resistance loci
Genome-wide survey and analysis of microsatellites in nematodes, with a focus on the plant-parasitic species Meloidogyne incognita
<p>Abstract</p> <p>Background</p> <p>Microsatellites are the most popular source of molecular markers for studying population genetic variation in eukaryotes. However, few data are currently available about their genomic distribution and abundance across the phylum Nematoda. The recent completion of the genomes of several nematode species, including <it>Meloidogyne incognita</it>, a major agricultural pest worldwide, now opens the way for a comparative survey and analysis of microsatellites in these organisms.</p> <p>Results</p> <p>Using MsatFinder, the total numbers of 1-6 bp perfect microsatellites detected in the complete genomes of five nematode species (<it>Brugia malayi</it>, <it>Caenorhabditis elegans</it>, <it>M. hapla</it>, <it>M. incognita</it>, <it>Pristionchus pacificus</it>) ranged from 2,842 to 61,547, and covered from 0.09 to 1.20% of the nematode genomes. Under our search criteria, the most common repeat motifs for each length class varied according to the different nematode species considered, with no obvious relation to the AT-richness of their genomes. Overall, (AT)<sub><it>n</it></sub>, (AG)<sub><it>n </it></sub>and (CT)<sub><it>n </it></sub>were the three most frequent dinucleotide microsatellite motifs found in the five genomes considered. Except for two motifs in <it>P. pacificus</it>, all the most frequent trinucleotide motifs were AT-rich, with (AAT)<sub><it>n </it></sub>and (ATT)<sub><it>n </it></sub>being the only common to the five nematode species. A particular attention was paid to the microsatellite content of the plant-parasitic species <it>M. incognita</it>. In this species, a repertoire of 4,880 microsatellite loci was identified, from which 2,183 appeared suitable to design markers for population genetic studies. Interestingly, 1,094 microsatellites were identified in 801 predicted protein-coding regions, 99% of them being trinucleotides. When compared against the InterPro domain database, 497 of these CDS were successfully annotated, and further assigned to Gene Ontology terms.</p> <p>Conclusions</p> <p>Contrasted patterns of microsatellite abundance and diversity were characterized in five nematode genomes, even in the case of two closely related <it>Meloidogyne </it>species. 2,245 di- to hexanucleotide loci were identified in the genome of <it>M. incognita</it>, providing adequate material for the future development of a wide range of microsatellite markers in this major plant parasite.</p
The map-1 Gene Family in Root-Knot Nematodes, Meloidogyne spp.: A Set of Taxonomically Restricted Genes Specific to Clonal Species
Taxonomically restricted genes (TRGs), i.e., genes that are restricted to a limited subset of phylogenetically related organisms, may be important in adaptation. In parasitic organisms, TRG-encoded proteins are possible determinants of the specificity of host-parasite interactions. In the root-knot nematode (RKN) Meloidogyne incognita, the map-1 gene family encodes expansin-like proteins that are secreted into plant tissues during parasitism, thought to act as effectors to promote successful root infection. MAP-1 proteins exhibit a modular architecture, with variable number and arrangement of 58 and 13-aa domains in their central part. Here, we address the evolutionary origins of this gene family using a combination of bioinformatics and molecular biology approaches. Map-1 genes were solely identified in one single member of the phylum Nematoda, i.e., the genus Meloidogyne, and not detected in any other nematode, thus indicating that the map-1 gene family is indeed a TRG family. A phylogenetic analysis of the distribution of map-1 genes in RKNs further showed that these genes are specifically present in species that reproduce by mitotic parthenogenesis, with the exception of M. floridensis, and could not be detected in RKNs reproducing by either meiotic parthenogenesis or amphimixis. These results highlight the divergence between mitotic and meiotic RKN species as a critical transition in the evolutionary history of these parasites. Analysis of the sequence conservation and organization of repeated domains in map-1 genes suggests that gene duplication(s) together with domain loss/duplication have contributed to the evolution of the map-1 family, and that some strong selection mechanism may be acting upon these genes to maintain their functional role(s) in the specificity of the plant-RKN interactions
Characterisation of a Desmosterol Reductase Involved in Phytosterol Dealkylation in the Silkworm, Bombyx mori
Most species of invertebrate animals cannot synthesise sterols de novo and many that feed on plants dealkylate phytosterols (mostly C29 and C28) yielding cholesterol (C27). The final step of this dealkylation pathway involves desmosterol reductase (DHCR24)-catalysed reduction of desmosterol to cholesterol. We now report the molecular characterisation in the silkworm, Bombyx mori, of such a desmosterol reductase involved in production of cholesterol from phytosterol, rather than in de novo synthesis of cholesterol. Phylogenomic analysis of putative desmosterol reductases revealed the occurrence of various clades that allowed for the identification of a strong reductase candidate gene in Bombyx mori (BGIBMGA 005735). Following PCR-based cloning of the cDNA (1.6 kb) and its heterologous expression in Saccharomyces cerevisae, the recombinant protein catalysed reduction of desmosterol to cholesterol in an NADH- and FAD- dependent reaction
- …
