117 research outputs found

    Network analyses in systems biology: new strategies for dealing with biological complexity

    Get PDF
    The increasing application of network models to interpret biological systems raises a number of important methodological and epistemological questions. What novel insights can network analysis provide in biology? Are network approaches an extension of or in conflict with mechanistic research strategies? When and how can network and mechanistic approaches interact in productive ways? In this paper we address these questions by focusing on how biological networks are represented and analyzed in a diverse class of case studies. Our examples span from the investigation of organizational properties of biological networks using tools from graph theory to the application of dynamical systems theory to understand the behavior of complex biological systems. We show how network approaches support and extend traditional mechanistic strategies but also offer novel strategies for dealing with biological complexity

    Mammalian Target of Rapamycin (mTOR) Activity Dependent Phospho-Protein Expression in Childhood Acute Lymphoblastic Leukemia (ALL)

    Get PDF
    Modern treatment strategies have improved the prognosis of childhood ALL; however, treatment still fails in 25–30% of patients. Further improvement of treatment may depend on the development of targeted therapies. mTOR kinase, a central mediator of several signaling pathways, has recently attracted remarkable attention as a potential target in pediatric ALL. However, limited data exists about the activity of mTOR. In the present study, the amount of mTOR activity dependent phospho-proteins was characterized by ELISA in human leukemia cell lines and in lymphoblasts from childhood ALL patients (n = 49). Expression was measured before and during chemotherapy and at relapses. Leukemia cell lines exhibited increased mTOR activity, indicated by phospho-S6 ribosomal protein (p-S6) and phosphorylated eukaryotic initiation factor 4E binding protein (p-4EBP1). Elevated p-4EBP1 protein levels were detected in ALL samples at diagnosis; efficacy of chemotherapy was followed by the decrease of mTOR activity dependent protein phosphorylation. Optical density (OD) for p-4EBP1 (ELISA) was significantly higher in patients with poor prognosis at diagnosis, and in the samples of relapsed patients. Our results suggest that measuring mTOR activity related phospho-proteins such as p-4EBP1 by ELISA may help to identify patients with poor prognosis before treatment, and to detect early relapses. Determining mTOR activity in leukemic cells may also be a useful tool for selecting patients who may benefit from future mTOR inhibitor treatments

    Reversed-phase high-performance liquid chromatography–fluorescence detection for the analysis of glutathione and its precursor γ-glutamyl cysteine in wines and model wines supplemented with oenological inactive dry yeast preparations

    Get PDF
    El pdf del artículo es la versión pre-print.A reversed-phase high-performance liquid chromatography-fluorescence detection methodology involving a pre-column derivatization procedure using 2,3-naphtalenedialdehyde in the presence of 5 and 0. 5 mM of dithiothreitol to determine total and reduced glutathione (GSH) and γ-glutamyl-cysteine (γ-glu-cys) in musts and wines has been set up and validated. The proposed method showed good linearity (R 2 >99% for reduced and total GSH, and R 2 >98% for γ-glu-cys) in synthetic wines, over a wide range of concentration (0-10 mg L -1). The limits of detection for reduced GSH in synthetic and real wines were almost the same (0. 13 and 0. 15 mg L -1, respectively) and slightly higher for γ-glu-cys (0. 24 mg L -1). The application of the method allowed knowing, for the first time, the amount of total and reduced GSH and γ-glu-cys released into synthetic wines by oenological preparations of commercial inactive dry yeast (IDY). In addition, the evolution of these three compounds during the winemaking and shelf life (0-9 months) of an industrially manufactured rosé wine supplemented with a GSH-enriched IDY showed that although GSH is effectively released from IDY, it is rapidly oxidized during alcoholic fermentation, contributing to the higher total GSH content determined in wines supplemented with GSH-enriched IDYs compared to control wines. © 2011 Springer Science+Business Media, LLC.IAO and JJRB acknowledge CAM and CSIC for their respective research grants. This work has been founded by PET2007-0134 project.Peer Reviewe

    Colorectal Hyperplasia and Dysplasia Due to Human Carcinoembryonic Antigen (CEA) Family Member Expression in Transgenic Mice

    Get PDF
    CEA and CEACAM6 are immunoglobulin family intercellular adhesion molecules that are up-regulated without structural mutations in approximately 70% of human cancers. Results in in vitro systems showing tumorigenic effects for these molecules suggest that this correlation could indicate an instrumental role in tumorigenesis. To test whether this applies in vivo, transgenic mice harboring 187 kb of the human genome containing four CEA family member genes including the CEA and CEACAM6 genes were created and their copy numbers increased by mating until colonocyte expression levels reached levels seen in human colorectal carcinomas. The colonocyte surface level of integrin α5 and the activation of AKT increased progressively with the expression levels of CEA/CEACAM6. Colonic crypts showed a progressive increase in colonocyte proliferation, an increase in crypt fission, and a strong inhibition of both differentiation and anoikis/apoptosis. All transgenic mice showed massively enlarged colons comprising a continuous mosaic of severe hyperplasia, dysplasia and serrated adenomatous morphology. These results suggest that up-regulated non-mutated adhesion molecules could have a significant instrumental role in human cancer

    Evolution of the Multi-Domain Structures of Virulence Genes in the Human Malaria Parasite, Plasmodium falciparum

    Get PDF
    The var gene family of Plasmodium falciparum encodes the immunodominant variant surface antigens PfEMP1. These highly polymorphic proteins are important virulence factors that mediate cytoadhesion to a variety of host tissues, causing sequestration of parasitized red blood cells in vital organs, including the brain or placenta. Acquisition of variant-specific antibodies correlates with protection against severe malarial infections; however, understanding the relationship between gene expression and infection outcome is complicated by the modular genetic architectures of var genes that encode varying numbers of antigenic domains with differential binding specificities. By analyzing the domain architectures of fully sequenced var gene repertoires we reveal a significant, non-random association between the number of domains comprising a var gene and their sequence conservation. As such, var genes can be grouped into those that are short and diverse and genes that are long and conserved, suggesting gene length as an important characteristic in the classification of var genes. We then use an evolutionary framework to demonstrate how the same evolutionary forces acting on the level of an individual gene may have also shaped the parasite's gene repertoire. The observed associations between sequence conservation, gene architecture and repertoire structure can thus be explained by a trade-off between optimizing within-host fitness and minimizing between-host immune selection pressure. Our results demonstrate how simple evolutionary mechanisms can explain var gene structuring on multiple levels and have important implications for understanding the multifaceted epidemiology of P. falciparum malaria

    Obtaining Adequate Surgical Margins in Breast-Conserving Therapy for Patients with Early-Stage Breast Cancer: Current Modalities and Future Directions

    Get PDF
    Inadequate surgical margins represent a high risk for adverse clinical outcome in breast-conserving therapy (BCT) for early-stage breast cancer. The majority of studies report positive resection margins in 20% to 40% of the patients who underwent BCT. This may result in an increased local recurrence (LR) rate or additional surgery and, consequently, adverse affects on cosmesis, psychological distress, and health costs. In the literature, various risk factors are reported to be associated with positive margin status after lumpectomy, which may allow the surgeon to distinguish those patients with a higher a priori risk for re-excision. However, most risk factors are related to tumor biology and patient characteristics, which cannot be modified as such. Therefore, efforts to reduce the number of positive margins should focus on optimizing the surgical procedure itself, because the surgeon lacks real-time intraoperative information on the presence of positive resection margins during breast-conserving surgery. This review presents the status of pre- and intraoperative modalities currently used in BCT. Furthermore, innovative intraoperative approaches, such as positron emission tomography, radioguided occult lesion localization, and near-infrared fluorescence optical imaging, are addressed, which have to prove their potential value in improving surgical outcome and reducing the need for re-excision in BCT

    Rule-Based Cell Systems Model of Aging using Feedback Loop Motifs Mediated by Stress Responses

    Get PDF
    Investigating the complex systems dynamics of the aging process requires integration of a broad range of cellular processes describing damage and functional decline co-existing with adaptive and protective regulatory mechanisms. We evolve an integrated generic cell network to represent the connectivity of key cellular mechanisms structured into positive and negative feedback loop motifs centrally important for aging. The conceptual network is casted into a fuzzy-logic, hybrid-intelligent framework based on interaction rules assembled from a priori knowledge. Based upon a classical homeostatic representation of cellular energy metabolism, we first demonstrate how positive-feedback loops accelerate damage and decline consistent with a vicious cycle. This model is iteratively extended towards an adaptive response model by incorporating protective negative-feedback loop circuits. Time-lapse simulations of the adaptive response model uncover how transcriptional and translational changes, mediated by stress sensors NF-κB and mTOR, counteract accumulating damage and dysfunction by modulating mitochondrial respiration, metabolic fluxes, biosynthesis, and autophagy, crucial for cellular survival. The model allows consideration of lifespan optimization scenarios with respect to fitness criteria using a sensitivity analysis. Our work establishes a novel extendable and scalable computational approach capable to connect tractable molecular mechanisms with cellular network dynamics underlying the emerging aging phenotype

    Ebola: translational science considerations

    Get PDF
    We are currently in the midst of the most aggressive and fulminating outbreak of Ebola-related disease, commonly referred to as “Ebola”, ever recorded. In less than a year, the Ebola virus (EBOV, Zaire ebolavirus species) has infected over 10,000 people, indiscriminately of gender or age, with a fatality rate of about 50%. Whereas at its onset this Ebola outbreak was limited to three countries in West Africa (Guinea, where it was first reported in late March 2014, Liberia, where it has been most rampant in its capital city, Monrovia and other metropolitan cities, and Sierra Leone), cases were later reported in Nigeria, Mali and Senegal, as well as in Western Europe (i.e., Madrid, Spain) and the US (i.e., Dallas, Texas; New York City) by late October 2014. World and US health agencies declared that the current Ebola virus disease (EVD) outbreak has a strong likelihood of growing exponentially across the world before an effective vaccine, treatment or cure can be developed, tested, validated and distributed widely. In the meantime, the spread of the disease may rapidly evolve from an epidemics to a full-blown pandemic. The scientific and healthcare communities actively research and define an emerging kaleidoscope of knowledge about critical translational research parameters, including the virology of EBOV, the molecular biomarkers of the pathological manifestations of EVD, putative central nervous system involvement in EVD, and the cellular immune surveillance to EBOV, patient-centered anthropological and societal parameters of EVD, as well as translational effectiveness about novel putative patient-targeted vaccine and pharmaceutical interventions, which hold strong promise, if not hope, to curb this and future Ebola outbreaks. This work reviews and discusses the principal known facts about EBOV and EVD, and certain among the most interesting ongoing or future avenues of research in the field, including vaccination programs for the wild animal vectors of the virus and the disease from global translational science perspective

    Use of anticoagulants and antiplatelet agents in stable outpatients with coronary artery disease and atrial fibrillation. International CLARIFY registry

    Get PDF
    corecore