97 research outputs found

    Visual orbit for the low-mass binary Gliese 22 AC from speckle interferometry

    Full text link
    Based on 14 data points obtained with near-infrared speckle interferometry and covering an almost entire revolution, we present a first visual orbit for the low-mass binary system Gliese 22 AC. The quality of the orbit is largely improved with respect to previous astrometric solutions. The dynamical system mass is 0.592 +- 0.065 solar masses, where the largest part of the error is due to the Hipparcos parallax. A comparison of this dynamical mass with mass-luminosity relations on the lower main sequence and theoretical evolutionary models for low-mass objects shows that both probably underestimate the masses of M dwarfs. A mass estimate for the companion Gliese 22 C indicates that this object is a very low-mass star with a mass close to the hydrogen burning mass limit.Comment: Accepted by Astronomy and Astrophysics, 6 pages, 2 figure

    Informal “Seed” Systems and the Management of Gene Flow in Traditional Agroecosystems: The Case of Cassava in Cauca, Colombia

    Get PDF
    Our ability to manage gene flow within traditional agroecosystems and their repercussions requires understanding the biology of crops, including farming practices' role in crop ecology. That these practices' effects on crop population genetics have not been quantified bespeaks lack of an appropriate analytical framework. We use a model that construes seed-management practices as part of a crop's demography to describe the dynamics of cassava (Manihot esculenta Crantz) in Cauca, Colombia. We quantify several management practices for cassava—the first estimates of their kind for a vegetatively-propagated crop—describe their demographic repercussions, and compare them to those of maize, a sexually-reproduced grain crop. We discuss the implications for gene flow, the conservation of cassava diversity, and the biosafety of vegetatively-propagated crops in centers of diversity. Cassava populations are surprisingly open and dynamic: farmers exchange germplasm across localities, particularly improved varieties, and distribute it among neighbors at extremely high rates vis-à-vis maize. This implies that a large portion of cassava populations consists of non-local germplasm, often grown in mixed stands with local varieties. Gene flow from this germplasm into local seed banks and gene pools via pollen has been documented, but its extent remains uncertain. In sum, cassava's biology and vegetative propagation might facilitate pre-release confinement of genetically-modified varieties, as expected, but simultaneously contribute to their diffusion across traditional agroecosystems if released. Genetically-modified cassava is unlikely to displace landraces or compromise their diversity; but rapid diffusion of improved germplasm and subsequent incorporation into cassava landraces, seed banks or wild populations could obstruct the tracking and eradication of deleterious transgenes. Attempts to regulate traditional farming practices to reduce the risks could compromise cassava populations' adaptive potential and ultimately prove ineffectual

    The duck hepatitis virus 5'-UTR possesses HCV-like IRES activity that is independent of eIF4F complex and modulated by downstream coding sequences

    Get PDF
    Duck hepatitis virus (DHV-1) is a worldwide distributed picornavirus that causes acute and fatal disease in young ducklings. Recently, the complete genome of DHV-1 has been determined and comparative sequence analysis has shown that possesses the typical picornavirus organization but exhibits several unique features. For the first time, we provide evidence that the 626-nucleotide-long 5'-UTR of the DHV-1 genome contains an internal ribosome entry site (IRES) element that functions efficiently both in vitro and in mammalian cells. The prediction of the secondary structure of the DHV-1 IRES shows significant similarity to the hepatitis C virus (HCV) IRES. Moreover, similarly to HCV IRES, DHV-1 IRES can direct translation initiation in the absence of a functional eIF4F complex. We also demonstrate that the activity of the DHV-1 IRES is modulated by a viral coding sequence located downstream of the DHV-1 5'-UTR, which enhances DHV-1 IRES activity both in vitro and in vivo. Furthermore, mutational analysis of the predicted pseudo-knot structures at the 3'-end of the putative DHV-1 IRES supported the presence of conserved domains II and III and, as it has been previously described for other picornaviruses, these structures are essential for keeping the normal internal initiation of translation of DHV-1

    Global expression profiling of theophylline response genes in macrophages: evidence of airway anti-inflammatory regulation

    Get PDF
    BACKGROUND: Theophylline has been used widely as a bronchodilator for the treatment of bronchial asthma and has been suggested to modulate immune response. While the importance of macrophages in asthma has been reappraised and emphasized, their significance has not been well investigated. We conducted a genome-wide profiling of the gene expressions of macrophages in response to theophylline. METHODS: Microarray technology was used to profile the gene expression patterns of macrophages modulated by theophylline. Northern blot and real-time quantitative RT-PCR were also used to validate the microarray data, while Western blot and ELISA were used to measure the levels of IL-13 and LTC4. RESULTS: We identified dozens of genes in macrophages that were dose-dependently down- or up-regulated by theophylline. These included genes related to inflammation, cytokines, signaling transduction, cell adhesion and motility, cell cycle regulators, and metabolism. We observed that IL-13, a central mediator of airway inflammation, was dramatically suppressed by theophylline. Real-time quantitative RT-PCR and ELISA analyses also confirmed these results, without respect to PMA-treated THP-1 cells or isolated human alveolar macrophages. Theophylline, rolipram, etazolate, db-cAMP and forskolin suppressed both IL-13 mRNA expression (~25%, 2.73%, 8.12%, 5.28%, and 18.41%, respectively) and protein secretion (<10% production) in macrophages. These agents also effectively suppressed LTC4 expression. CONCLUSION: Our results suggest that the suppression of IL-13 by theophylline may be through cAMP mediation and may decrease LTC4 production. This study supports the role of theophylline as a signal regulator of inflammation, and that down regulation of IL-13 by theophylline may have beneficial effects in inflammatory airway diseases

    Gene-Gene and Gene-Environmental Interactions of Childhood Asthma: A Multifactor Dimension Reduction Approach

    Get PDF
    Background: The importance of gene-gene and gene-environment interactions on asthma is well documented in literature, but a systematic analysis on the interaction between various genetic and environmental factors is still lacking. Methodology/Principal Findings: We conducted a population-based, case-control study comprised of seventh-grade children from 14 Taiwanese communities. A total of 235 asthmatic cases and 1,310 non-asthmatic controls were selected for DNA collection and genotyping. We examined the gene-gene and gene-environment interactions between 17 singlenucleotide polymorphisms in antioxidative, inflammatory and obesity-related genes, and childhood asthma. Environmental exposures and disease status were obtained from parental questionnaires. The model-free and non-parametrical multifactor dimensionality reduction (MDR) method was used for the analysis. A three-way gene-gene interaction was elucidated between the gene coding glutathione S-transferase P (GSTP1), the gene coding interleukin-4 receptor alpha chain (IL4Ra) and the gene coding insulin induced gene 2 (INSIG2) on the risk of lifetime asthma. The testing-balanced accuracy on asthma was 57.83 % with a cross-validation consistency of 10 out of 10. The interaction of preterm birth and indoor dampness had the highest training-balanced accuracy at 59.09%. Indoor dampness also interacted with many genes, including IL13, beta-2 adrenergic receptor (ADRB2), signal transducer and activator of transcription 6 (STAT6). We also used likelihood ratio tests for interaction and chi-square tests to validate our results and all tests showed statistical significance

    Changing atmospheric CO2 concentration was the primary driver of early Cenozoic climate

    Get PDF
    The Early Eocene Climate Optimum (EECO, which occurred about 51 to 53 million years ago)1, was the warmest interval of the past 65 million years, with mean annual surface air temperature over ten degrees Celsius warmer than during the pre-industrial period2–4. Subsequent global cooling in the middle and late Eocene epoch, especially at high latitudes, eventually led to continental ice sheet development in Antarctica in the early Oligocene epoch (about 33.6 million years ago). However, existing estimates place atmospheric carbon dioxide (CO2) levels during the Eocene at 500–3,000 parts per million5–7, and in the absence of tighter constraints carbon–climate interactions over this interval remain uncertain. Here we use recent analytical and methodological developments8–11 to generate a new high-fidelity record of CO2 concentrations using the boron isotope (δ11Β) composition of well preserved planktonic foraminifera from the Tanzania Drilling Project, revising previous estimates6. Although species-level uncertainties make absolute values difficult to constrain, CO2 concentrations during the EECO were around 1,400 parts per million. The relative decline in CO2 concentration through the Eocene is more robustly constrained at about fifty per cent, with a further decline into the Oligocene12. Provided the latitudinal dependency of sea surface temperature change for a given climate forcing in the Eocene was similar to that of the late Quaternary period13, this CO2 decline was sufficient to drive the well documented high- and low-latitude cooling that occurred through the Eocene14. Once the change in global temperature between the pre-industrial period and the Eocene caused by the action of all known slow feedbacks (apart from those associated with the carbon cycle) is removed2–4, both the EECO and the late Eocene exhibit an equilibrium climate sensitivity relative to the pre-industrial period of 2.1 to 4.6 degrees Celsius per CO2 doubling (66 per cent confidence), which is similar to the canonical range (1.5 to 4.5 degrees Celsius15), indicating that a large fraction of the warmth of the early Eocene greenhouse was driven by increased CO2 concentrations, and that climate sensitivity was relatively constant throughout this period

    Boron isotopes in foraminifera : systematics, biomineralisation, and CO2 reconstruction

    Get PDF
    Funding: Fellowship from University of St Andrews, $100 (pending) from Richard Zeebe, UK NERC grants NE/N003861/1 and NE/N011716/1.The boron isotope composition of foraminifera provides a powerful tracer for CO2 change over geological time. This proxy is based on the equilibrium of boron and its isotopes in seawater, which is a function of pH. However while the chemical principles underlying this proxy are well understood, its reliability has previously been questioned, due to the difficulty of boron isotope (δ11B) analysis on foraminferal samples and questions regarding calibrations between δ11B and pH. This chapter reviews the current state of the δ11B-pH proxy in foraminfera, including the pioneering studies that established this proxy’s potential, and the recent work that has improved understanding of boron isotope systematics in foraminifera and applied this tracer to the geological record. The theoretical background of the δ11B-pH proxy is introduced, including an accurate formulation of the boron isotope mass balance equations. Sample preparation and analysis procedures are then reviewed, with discussion of sample cleaning, the potential influence of diagenesis, and the strengths and weaknesses of boron purification by column chromatography versus microsublimation, and analysis by NTIMS versus MC-ICPMS. The systematics of boron isotopes in foraminifera are discussed in detail, including results from benthic and planktic taxa, and models of boron incorporation, fractionation, and biomineralisation. Benthic taxa from the deep ocean have δ11B within error of borate ion at seawater pH. This is most easily explained by simple incorporation of borate ion at the pH of seawater. Planktic foraminifera have δ11B close to borate ion, but with minor offsets. These may be driven by physiological influences on the foraminiferal microenvironment; a novel explanation is also suggested for the reduced δ11B-pH sensitivities observed in culture, based on variable calcification rates. Biomineralisation influences on boron isotopes are then explored, addressing the apparently contradictory observations that foraminifera manipulate pH during chamber formation yet their δ11B appears to record the pH of ambient seawater. Potential solutions include the influences of magnesium-removal and carbon concentration, and the possibility that pH elevation is most pronounced during initial chamber formation under favourable environmental conditions. The steps required to reconstruct pH and pCO2 from δ11B are then reviewed, including the influence of seawater chemistry on boron equilibrium, the evolution of seawater δ11B, and the influence of second carbonate system parameters on δ11B-based reconstructions of pCO2. Applications of foraminiferal δ11B to the geological record are highlighted, including studies that trace CO2 storage and release during recent ice ages, and reconstructions of pCO2 over the Cenozoic. Relevant computer codes and data associated with this article are made available online.Publisher PDFPeer reviewe

    Beyond climate-smart agriculture: toward safe operating spaces for global food systems

    Get PDF
    Agriculture is considered to be “climate-smart” when it contributes to increasing food security, adaptation and mitigation in a sustainable way. This new concept now dominates current discussions in agricultural development because of its capacity to unite the agendas of the agriculture, development and climate change communities under one brand. In this opinion piece authored by scientists from a variety of international agricultural and climate research communities, we argue that the concept needs to be evaluated critically because the relationship between the three dimensions is poorly understood, such that practically any improved agricultural practice can be considered climate-smart. This lack of clarity may have contributed to the broad appeal of the concept. From the understanding that we must hold ourselves accountable to demonstrably better meet human needs in the short and long term within foreseeable local and planetary limits, we develop a conceptualization of climate-smart agriculture as agriculture that can be shown to bring us closer to safe operating spaces for agricultural and food systems across spatial and temporal scales. Improvements in the management of agricultural systems that bring us significantly closer to safe operating spaces will require transformations in governance and use of our natural resources, underpinned by enabling political, social and economic conditions beyond incremental changes. Establishing scientifically credible indicators and metrics of long-term safe operating spaces in the context of a changing climate and growing social-ecological challenges is critical to creating the societal demand and political will required to motivate deep transformations. Answering questions on how the needed transformational change can be achieved will require actively setting and testing hypotheses to refine and characterize our concepts of safer spaces for social-ecological systems across scales. This effort will demand prioritizing key areas of innovation, such as (1) improved adaptive management and governance of social-ecological systems; (2) development of meaningful and relevant integrated indicators of social-ecological systems; (3) gathering of quality integrated data, information, knowledge and analytical tools for improved models and scenarios in time frames and at scales relevant for decision-making; and (4) establishment of legitimate and empowered science policy dialogues on local to international scales to facilitate decision making informed by metrics and indicators of safe operating spaces
    corecore