29 research outputs found

    Analysis of polymorphic TGFB1 codons 10, 25, and 263 in a German patient group with non-syndromic cleft lip, alveolus, and palate compared with healthy adults

    Get PDF
    BACKGROUND: Clefts of the lip, alveolus, and palate (CLPs) rank among the most frequent and significant congenital malformations. Leu10Pro and Arg25Pro polymorphisms in the precursor region and Thr263Ile polymorphism in the prodomain of the transforming growth factor β1 (TGF-β1) gene have proved to be crucial to predisposition of several disorders. METHODS: In this study, polymorphism analysis was performed by real-time polymerase chain reaction (LightCycler) and TGF-β1 levels determined by enzyme-linked immunosorbent assay. RESULTS: Only 2/60 Caucasian non-syndromic patients with CLP (3.3%) carried the Arg25Pro and another 2/60 patients (3.3%) the Thr263Ile genotypes, whereas, in a control group of 60 healthy Caucasian blood donors, these heterozygous genotypes were more frequent 16.7% having Arg25Pro (10/60; p < 0.035) and 10,0% having Thr263Ile (6/60), respectively. TGF-β1 levels in platelet-poor plasma of heterozygous Arg25Pro individuals were lower than those of homozygous members (Arg25Arg) in the latter group, but this discrepancy narrowly failed to be significant. Although polymorphisms in codon 10 and 25 were associated with each other, no difference was found between patients and controls concerning the Leu10Pro polymorphism. CONCLUSIONS: The genetic differences in codons 25 and 263 suggest that TGF-β1 could play an important role in occurrence of CLP, however, functional experiments will be required to confirm the mechanisms of disturbed development

    Properties of Graphene: A Theoretical Perspective

    Full text link
    In this review, we provide an in-depth description of the physics of monolayer and bilayer graphene from a theorist's perspective. We discuss the physical properties of graphene in an external magnetic field, reflecting the chiral nature of the quasiparticles near the Dirac point with a Landau level at zero energy. We address the unique integer quantum Hall effects, the role of electron correlations, and the recent observation of the fractional quantum Hall effect in the monolayer graphene. The quantum Hall effect in bilayer graphene is fundamentally different from that of a monolayer, reflecting the unique band structure of this system. The theory of transport in the absence of an external magnetic field is discussed in detail, along with the role of disorder studied in various theoretical models. We highlight the differences and similarities between monolayer and bilayer graphene, and focus on thermodynamic properties such as the compressibility, the plasmon spectra, the weak localization correction, quantum Hall effect, and optical properties. Confinement of electrons in graphene is nontrivial due to Klein tunneling. We review various theoretical and experimental studies of quantum confined structures made from graphene. The band structure of graphene nanoribbons and the role of the sublattice symmetry, edge geometry and the size of the nanoribbon on the electronic and magnetic properties are very active areas of research, and a detailed review of these topics is presented. Also, the effects of substrate interactions, adsorbed atoms, lattice defects and doping on the band structure of finite-sized graphene systems are discussed. We also include a brief description of graphane -- gapped material obtained from graphene by attaching hydrogen atoms to each carbon atom in the lattice.Comment: 189 pages. submitted in Advances in Physic

    Hung Out to Dry: Choice of Priority Ecoregions for Conserving Threatened Neotropical Anurans Depends on Life-History Traits

    Get PDF
    Background: In the Neotropics, nearly 35 % of amphibian species are threatened by habitat loss, habitat fragmentation, and habitat split; anuran species with different developmental modes respond to habitat disturbance in different ways. This entails broad-scale strategies for conserving biodiversity and advocates for the identification of high conservation-value regions that are significant in a global or continental context and that could underpin more detailed conservation assessments towards such areas. Methodology/Principal Findings: We identified key ecoregion sets for anuran conservation using an algorithm that favors complementarity (beta-diversity) among ecoregions. Using the WWF’s Wildfinder database, which encompasses 700 threatened anuran species in 119 Neotropical ecoregions, we separated species into those with aquatic larvae (AL) or terrestrial development (TD), as this life-history trait affects their response to habitat disturbance. The conservation target of 100 % of species representation was attained with a set of 66 ecoregions. Among these, 30 were classified as priority both for species with AL and TD, 26 were priority exclusively for species with AL, and 10 for species with TD only. Priority ecoregions for both developmental modes are concentrated in the Andes and in Mesoamerica. Ecoregions important for conserving species with AL are widely distributed across the Neotropics. When anuran life histories were ignored, species with AL were always underrepresented in priority sets

    Role of host genetics in fibrosis

    Get PDF
    Fibrosis can occur in tissues in response to a variety of stimuli. Following tissue injury, cells undergo transformation or activation from a quiescent to an activated state resulting in tissue remodelling. The fibrogenic process creates a tissue environment that allows inflammatory and matrix-producing cells to invade and proliferate. While this process is important for normal wound healing, chronicity can lead to impaired tissue structure and function

    A common biological basis of obesity and nicotine addiction

    Get PDF
    J. Kaprio ja J. Tuomilehto työryhmien jäseniä (yht. 281).Peer reviewe

    Mining the human phenome using allelic scores that index biological intermediates

    Get PDF
    J. Kaprio ja M-L. Lokki työryhmien jäseniä.It is common practice in genome-wide association studies (GWAS) to focus on the relationship between disease risk and genetic variants one marker at a time. When relevant genes are identified it is often possible to implicate biological intermediates and pathways likely to be involved in disease aetiology. However, single genetic variants typically explain small amounts of disease risk. Our idea is to construct allelic scores that explain greater proportions of the variance in biological intermediates, and subsequently use these scores to data mine GWAS. To investigate the approach's properties, we indexed three biological intermediates where the results of large GWAS meta-analyses were available: body mass index, C-reactive protein and low density lipoprotein levels. We generated allelic scores in the Avon Longitudinal Study of Parents and Children, and in publicly available data from the first Wellcome Trust Case Control Consortium. We compared the explanatory ability of allelic scores in terms of their capacity to proxy for the intermediate of interest, and the extent to which they associated with disease. We found that allelic scores derived from known variants and allelic scores derived from hundreds of thousands of genetic markers explained significant portions of the variance in biological intermediates of interest, and many of these scores showed expected correlations with disease. Genome-wide allelic scores however tended to lack specificity suggesting that they should be used with caution and perhaps only to proxy biological intermediates for which there are no known individual variants. Power calculations confirm the feasibility of extending our strategy to the analysis of tens of thousands of molecular phenotypes in large genome-wide meta-analyses. We conclude that our method represents a simple way in which potentially tens of thousands of molecular phenotypes could be screened for causal relationships with disease without having to expensively measure these variables in individual disease collections.Peer reviewe
    corecore