29 research outputs found

    Full vector archaeomagnetic records from Anatolia between 2400 and 1350 BCE: Implications for geomagnetic field models and the dating of fires in antiquity

    Get PDF
    Anatolia, as one of the busiest crossroads of ancient civilizations, provides an ideal platform for archaeomagnetic studies. Previous results from the Middle East have suggested the occurrence of a strong peak in geomagnetic intensity at ∼1000 BCE associated with dramatic field strength variations that could require a radical rethinking of geodynamo theory. The behavior of the field in the centuries preceding this peak remains poorly constrained, however. Here we present the results of full-vector archaeomagnetic experiments performed on 18 sets of samples from three archaeological sites belonging to Assyrian Trade Colony and Hittite periods. Associated rock magnetic analyses showed that the major magnetic carrier is magnetite chemically stable up to 700 °C and the magnetic mineral assemblage is composed mostly of non-interacting PSD grains. The directional results are compared with existing data and with the most recent global geomagnetic field models pfm9k.1b and SHA.DIF.14k. The directions are in remarkably good agreement with SHA.DIF.14k which is based on archaeomagnetic and lava flow data. Together with our earlier results from Anatolia, we triple the existing database of directions for the 700 year long period 2200–1500 BCE, over a large region from Greece to Azerbaijan, and from Moldavia/Ukraine to Egypt. Three archaeointensity methods: thermal IZZI-Thellier, microwave Thellier and the multi-specimen protocol (MSP) produced virtual axial dipole moment estimates () that are somewhat higher than contemporaneous (regional and global) data and model predictions suggesting that the field was already substantially stronger than today more than 800 years prior to the reported peak. In addition to constraining geomagnetic variability, our data also allow us to assign relative dates to inferred fire events in the Assyrian Trade Colony Period sites. This allows us to conclude that the fire events at the largest site, Kültepe, were not all contemporaneous with one another and with the abandonment of the site as has been previously hypothesized

    Extreme geomagnetic field variability indicated by Eastern Mediterranean full-vector archaeomagnetic records

    Get PDF
    The magnetic field of the Earth can exhibit considerable variations at short time scales, even as short as decades. The archaeomagnetic studies of Middle Eastern artefacts (mainly from Israel and Jordan) show evidence for an exceptionally high intensity period from 1050-700 BC which displays two distinct spikes over the Levant, the Levantine Iron Age Anomaly (LIAA). Its exact duration and geographical extent are still poorly known. Despite the wealth of ancient settlements, the extensive cultural heritage and a long history of trade and immigration, the archaeomagnetism of Turkey and Cyprus remains largely unexplored. This study presents a large data set of ancient directions and intensities from seven archaeological sites in the Eastern Mediterranean covering a time span of ∼2000 yrs. The recorded directions from thirteen sets of samples are coherent with our earlier findings, yet show significantly larger swings than existing field models. In particular, we confirm the very large swing in inclination we found earlier, from 1910-1850 BC, that is also captured by the Greek PSV curve, and shallower by more than 10° than predicted by existing field models. Consequently, these models require substantial revision in this region. We were able to determine the archaeointensity from five sets of mud-bricks, from the thirteen attempted, allowing us to provide the full field vector. Furthermore, we present thirty-one new archaeointensity results from potsherds and mud-bricks that considerably enhance existing data, especially when a set of strict selection criteria is applied. Fourteen sets of potsherds from a single site (Tell Atchana) provide the longest sequence recorded so far in Turkey, from 2100 to 1350 BC. We find exceptionally high intensities of 145 and 175 ZAm2 around 700 BC, in well-dated mud-bricks and potsherds from two different locations (Tell Tayinat and Kilise Tepe), supporting extreme geomagnetic field variability in the region. Moreover, these two high intensities confirm the younger spike of the LIAA in Turkey

    Cigarette smoke-exposed neutrophils die unconventionally but are rapidly phagocytosed by macrophages

    Get PDF
    Pulmonary accumulation of neutrophils is typical for active smokers who are also predisposed to multiple inflammatory and infectious lung diseases. We show that human neutrophil exposure to cigarette smoke extract (CSE) leads to an atypical cell death sharing features of apoptosis, autophagy and necrosis. Accumulation of tar-like substances in autophagosomes is also apparent. Before detection of established cell death markers, CSE-treated neutrophils are effectively recognized and non-phlogistically phagocytosed by monocyte-derived macrophages. Blockade of LOX-1 and scavenger receptor A, but not MARCO or CD36, as well as pre-incubation with oxLDL, inhibited phagocytosis, suggesting that oxLDL-like structures are major phagocytosis signals. Specific lipid (β-carotene and quercetin), but not aqueous, antioxidants increased the pro-phagocytic effects of CSE. In contrast to non-phlogistic phagocytosis, degranulation of secondary granules, as monitored by lactoferrin release, was apparent on CSE exposure, which is likely to promote pulmonary inflammation and tissue degradation. Furthermore, CSE-exposed neutrophils exhibited a compromised ability to ingest the respiratory pathogen, Staphylococcus aureus, which likely contributes to bacterial persistence in the lungs of smokers and is likely to promote further pulmonary recruitment of neutrophils. These data provide mechanistic insight into the lack of accumulation of apoptotic neutrophil populations in the lungs of smokers and their increased susceptibility to degradative pulmonary diseases and bacterial infections

    Analyzing Triassic and Permian Geomagnetic Paleosecular Variation and the Implications for Ancient Field Morphology

    Get PDF
    Studying paleosecular variation (PSV) can provide unique insights into the average morphology of the geomagnetic field and the operation of the geodynamo. Although recent studies have expanded our knowledge of paleomagnetic field behavior through the late Mesozoic, relatively little is known regarding the Triassic period (ca. 251.9–201.3 Ma). This study compiles the first Triassic virtual geomagnetic pole (VGP) database for the analysis of PSV, as part of a longer Post-Permo-Carboniferous Reversed Superchron (PCRS) time interval (265-198 Ma). VGP angular dispersion and its dependence on apparent paleolatitude are compared against a new PCRS compilation and published PSV compilations for intervals across the last ∼320 Ma. We find that the Post-PCRS displays near latitudinal invariance of VGP dispersion while the PCRS displays very strong latitudinal dependence. PSV behavior during the Post-PCRS appears indistinguishable to that previously reported for the interval preceding the Cretaceous Normal Superchron (Pre-CNS; 126–198 Ma). The near-constant behavior between time intervals with significantly different apparent average polarity reversal frequencies does not support a suggested relationship between VGP dispersion and reversal frequency. The dispersion observed for the PCRS is consistent with the results of previous studies and represents behavior that is potentially unique over the last ∼320 Ma. A recently published approach to obtain a description of field morphology from equatorial VGP dispersion shows the PCRS geomagnetic field to have been more strongly axial dipole dominated than any interval since. This observation may be causally linked to the PCRS being the longest known superchron in the Phanerozoic geomagnetic polarity timescale

    Did Adria rotate relative to Africa?

    No full text
    The first and foremost boundary condition for kinematic reconstructions of the Mediterranean region is the relative motion between Africa and Eurasia, constrained through reconstructions of the Atlantic Ocean. The Adria continental block is in a downgoing plate position relative to the strongly curved central Mediterranean subductionrelated orogens, and forms the foreland of the Apennines, Alps, Dinarides, and Albanides–Hellenides. It is connected to the African plate through the Ionian Basin, likely with Lower Mesozoic oceanic lithosphere. If the relative motion of Adria versus Africa is known, its position relative to Eurasia can be constrained through a plate circuit, thus allowing robust boundary conditions for the reconstruction of the complex kinematic history of the Mediterranean region. Based on kinematic reconstructions for the Neogene motion of Adria versus Africa, as interpreted from the Alps and from Ionian Basin and its surrounding areas, it has been suggested that Adria underwent counterclockwise (ccw) vertical axis rotations ranging from 0 to 20. Here, we provide six new paleomagnetic poles from Adria, derived from the Lower Cretaceous to Upper Miocene carbonatic units of the Apulian peninsula (southern Italy). These, in combination with published poles from the Po Plain (Italy), the Istrian peninsula (Croatia), and the Gargano promontory (Italy), document a post-Eocene 9.8±9.5 counterclockwise vertical axis rotation of Adria. Our results do not show evidence of significant Africa–Adria rotation between the Early Cretaceous and Eocene. Models based on reconstructions of the Alps, invoking 17 ccw rotation, and based on the Ionian Basin, invoking 2 ccw rotation, are both permitted within the documented rotation range, yet are mutually exclusive. This apparent enigma could possibly be solved only if one or more of the following conditions are satisfied: (i) Neogene shortening in the western Alps has been significantly underestimated (by as much as 150 km); (ii) Neogene extension in the Ionian Basin has been significantly underestimated (by as much as 420 km); and/or (iii) a major sinistral strike-slip zone has decoupled northern and southern Adria in Neogene time. Here we present five alternative reconstructions of Adria at 20 Ma, highlighting the kinematic uncertainties, and satisfying the inferred rotation pattern from this study and/or from previously proposed kinematic reconstructions

    10^{10}Be evidence for the Matuyama-Brunhes geomagnetic reversal in the EPICA Dome C ice core

    No full text
    An ice core drilled at Dome C, Antarctica, is the oldest ice core so far retrieved 1. On the basis of ice flow modelling and a comparison between the deuterium signal in the ice with climate records from marine sediment cores, the ice at a depth of 3,190 m in the Dome C core is believed to have been deposited around 800,000 years ago 2, offering a rare opportunity to study climatic and environmental conditions over this time period. However, an independent determination of this age is important because the deuterium profile below a depth of 3,190 m depth does not show the expected correlation with the marine record 2. Here we present evidence for enhanced 10Be deposition in the ice at 3,160-3,170 m, which we interpret as a result of the low dipole field strength during the Matuyama-Brunhes geomagnetic reversal, which occurred about 780,000 years ago. If correct, this provides a crucial tie point between ice cores, marine cores and a radiometric timescale
    corecore