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Abstract 6 

Anatolia, as one of the busiest crossroads of ancient civilizations, provides an ideal platform 7 

for archaeomagnetic studies. Previous results from the Middle East have suggested the 8 

occurrence of a strong peak in geomagnetic intensity at ~1000 BCE associated with dramatic 9 

field strength variations that could require a radical rethinking of geodynamo theory. The 10 

behavior of the field in the centuries preceding this peak remains poorly constrained, 11 

however. Here we present the results of full-vector archaeomagnetic experiments 12 

performed on 18 sets of samples from three archaeological sites belonging to Assyrian Trade 13 

Colony and Hittite periods. Associated rock magnetic analyses showed that the major 14 

magnetic carrier is magnetite stable up to 700°C and the magnetic mineral assemblage is 15 

composed mostly of non-interacting PSD grains.  16 

The directional results are compared with existing data and with the most recent global 17 

geomagnetic field models pfm9k.1b and SHA.DIF.14k. The directions are in remarkably good 18 

agreement with SHA.DIF.14k which is based on archaeomagnetic and lava flow data. 19 

Together with our earlier results from Anatolia, we triple the existing database of directions 20 

for the 700 year long period 2250-1550 BCE, over a large region from Greece to Azerbaijan, 21 

and from Moldavia/Ukraine to Egypt.  22 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Liverpool Repository

https://core.ac.uk/display/80777661?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 2 

Three archaeointensity methods: thermal IZZI-Thellier, microwave Thellier and the multi-23 

specimen protocol (MSP) produced virtual axial dipole moment estimates (9.2-11.1 x 24 

1022Am2) that are somewhat higher than contemporaneous (regional and global) data and 25 

model predictions suggesting that the field was already substantially stronger than today 26 

more than 800 years prior to the reported peak. In addition to constraining geomagnetic 27 

variability, our data also allows us to assign relative dates to inferred fire events in the 28 

Assyrian Trade Colony Period sites. This allows us to conclude that the fire events at the 29 

largest site, Kültepe, were not all contemporaneous with one another and with the 30 

abandonment of the site as has been previously hypothesized. 31 
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1. Introduction 35 

Over the past decade, evidence for a short-lived period of very high geomagnetic 36 

intensities in the Levant rapidly accumulated (Ben-Yosef et al., 2008a; Ben-Yosef et al., 2009; 37 

Ben-Yosef et al., 2008b; Gallet and al-Maqdissi, 2010; Gallet and Butterlin, 2014; Gallet et al., 38 

2014; Gallet et al., 2003; Gallet et al., 2006; Gallet and Le Goff, 2006; Gallet et al., 2008; 39 

Genevey et al., 2003; Shaar et al., 2011). At least three studies present reliable 40 

paleointensities that exceed twice the current field strength in this region ~1050-850 BCE. 41 

The occurrence of the palaeointensity high, or ‘archaeomagnetic jerk’ (Gallet et al., 2003) 42 

sparked considerable debate: such geomagnetic features are not captured by even the most 43 

recent geomagnetic models describing changes in the field (Nilsson et al., 2014; Pavón-44 

Carrasco et al., 2014). Moreover, it was recently shown that current geodynamo theory 45 

cannot sustain the existence of this phenomenon (Livermore et al., 2014). 46 

Most of the available data for this region is derived from archaeological artefacts, such as 47 

shards, copper slag or fired mud-bricks. Their rock magnetic properties are generally 48 

favourable, but such samples are often found un-oriented, so they do not provide 49 

constraints on directional variations. Only in-situ materials like kilns or burnt mud-brick walls 50 

provide the opportunity to obtain reliable palaeodirections; studies reporting these or full 51 

vector descriptions of the field are scarce (e.g.: Bucha and Mellaart (1967); Sarıbudak and 52 

Tarling (1993); Ertepinar et al., (2012)). Therefore, directional records for the Levant are 53 

supported by less data than the palaeointensity curve for the past millennia – only 30% of 54 

the data in GEOMAGIA50 includes directions. Directional data is particularly scarce ~2250-55 

1550 BCE, the Assyrian and Hittite periods in the Levant. 56 
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To further constrain the occurrence of the high palaeointensities -and to possibly 57 

elucidate their driving force- a full vector record of the geomagnetic field in this area for the 58 

past 5 millennia is indispensible. Here, we look at Anatolia as one of the busiest crossroads 59 

of ancient civilizations, an ideal platform for archaeomagnetic studies. Here, we present new 60 

data from two Assyrian and one Hittite period site. Our new data triples the available 61 

directional information for this particular time interval. Our palaeointensities are obtained 62 

by three different and independent methods: thermal IZZI-Thellier experiments, the 63 

Microwave Thellier technique, and the Multi-specimen protocol. The credibility of our 64 

findings is greatly enhanced if the results of (two of) these methods agree. We compare our 65 

results to the latest compilations and models of the field, pfm9k.1b (Nilsson et al., 2014) 66 

based on both sediment and igneous/archaeomagnetic data, and SHA.DIF.14k (Pavón-67 

Carrasco et al., 2014) based on archaeomagnetic and lava flow data alone.  68 

During our field campaigns we also sampled a number of (sub-)sites within Kültepe. The 69 

timing and character of the demise of this settlement has puzzled archaeologists for years. 70 

By comparing palaeodirections from different parts of the settlement to each-other and to 71 

the regional record in directions, we conclude that this settlement was destroyed (burned) 72 

not at once, but in various stages. 73 

2. The Bronze Age in Anatolia 74 

In the early second millennium BCE, Anatolia was in the form of city-states where 75 

Assyrian merchants came to trade textiles and metals. These merchants sometimes resided 76 

in Anatolia which gave the era its name: Assyrian Trade Colony Period. After the trading 77 

relations had started, a number of trading centers called Karum were established in the 78 

major cities of the time. This is also contemporaneous with the earliest writing to appear - 79 
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inscribed on clay cuneiform tablets. There are more than 20.000 tablets found in Kültepe, 80 

‘the trade capital of the period’, dating between 1970-1740 BCE. The richness of cultural 81 

findings and extensive dendrochronology studies allowed the archaeologists to have a well 82 

defined age constraint on the site. This unique combination made Kültepe the reference site 83 

for dating the other archaeological sites. The Assyrian Trade Colony Period ended at ~1650 84 

BCE with the emergence of Hittites in Anatolia (Fig. 1). 85 

In ~1700 BCE, people of unknown origin migrated to Anatolia and united the city states 86 

under one central authority, laying the foundations of the Hittite empire centered at 87 

Hattusa, which is now a UNESCO World Heritage site. The domination of the Hittites lasted 88 

for almost a thousand years and the empire reached its height in the 14th century BCE 89 

controlling a large part of Anatolia, the northern Levant and Upper Mesopotamia. The reign 90 

started as a kingdom (Old Kingdom, ca. 1650-1500 BCE), then became an Empire between 91 

1400-1200 BCE. After 1180 BCE, the empire disintegrated into several independent city 92 

states called Neo-Hittites and completely vanished ~8th century BCE. The historical 93 

documentations of Hittites show a remarkable political and military power as well as a very 94 

rich and long lasting culture (Sagona and Zimansky, 2009). The sampling is carried out on 95 

three archaeological sites two of which are from the Assyrian Period (Kültepe and 96 

Kalehöyük) and the third (Şapinuva) is from a Hittite Period site. A description of each 97 

settlement is given in the appendix. 98 

3. Rock magnetic analyses and results 99 

Room temperature bulk magnetic susceptibilities and thermomagnetic curves were 100 

determined for the identification of the magnetic carriers and thermal stability. Based on the 101 

preliminary results from these experiments and the quality of the directional results, 9 sites 102 
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appeared to be suitable for archaeointensity measurements. For these, we additionally 103 

performed hysteresis loop, Isothermal Remanent Magnetization (IRM) acquisition and First 104 

Order Reversal Curve (FORC) diagram experiments (Roberts et al., 2000). 105 

Low field bulk magnetic susceptibility. Samples were measured with a Kappabridge 106 

KLY-2. The results are homogeneous among different rock types and the values range 0.05-107 

35.0*10-3SI. The results are used to calculate the Koenigsberger Ratio (Qn) which is an 108 

appropriate measure to distinguish whether the samples carry a complete thermoremanent 109 

magnetization (TRM). All materials other than the majority of KA granites have Qn value 110 

greater than 1 indicating that TRM strongly dominates, providing a positive stability test (Fig. 111 

2a). 112 

Thermomagnetic curves (Curie balance).  Measurements were done using a 113 

modified horizontal translation type Curie balance that uses a cycling rather then a steady 114 

magnetizing field (Mullender et al., 1993). Field settings varied from 50-300mT to 270-115 

300mT. Heating and cooling rates were 10°C/min and experiments were done in air. For all 116 

types of materials other than the KT ignimbrites, the heating and cooling curves are 117 

essentially reversible indicating that the magnetic minerals are stable until 700°C (Fig. 2b-g). 118 

The mud-brick samples from KA, KT and the granite (KA) and ignimbrite (KT) samples have a 119 

single Curie temperature (Tc) at ~580°C which is characteristic for magnetite (Fig. 2b-d). The 120 

mud-bricks of SPN also have a Tc at ~580°C, again pointing to the presence of magnetite as 121 

the main carrier, but there is an extra inflection point at ~350°C, which could point to some 122 

maghemite, or possibly titanomagnetite or Al-substituted magnetite  (Dunlop and Özdemir, 123 

1997) (Fig. 2e). The vitrified mud-bricks from KT12 exhibit an almost reversible curve which 124 

shows mainly paramagnetic contribution preventing the identification of any magnetic 125 

carrier (Fig. 2f). The curves from some ignimbrites of KT show a difference between heating 126 
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and cooling curves resulting in irreversible loss in magnetization up to 80% indicating major 127 

alteration (Fig. 2g). 128 

Hysteresis loops and FORC diagrams. For the sites that looked promising for 129 

archaeointensity measurements, additional rock magnetic properties such as hysteresis 130 

loops, IRM acquisition curves and FORC diagrams were investigated, to assess domain state 131 

and magnetic stability. From each set 3-5 samples were measured with an alternating 132 

gradient force magnetometer (AGFM). After correction of the paramagnetic and 133 

diamagnetic contributions on the hysteresis loops (Fig. 3a) we derived the hysteresis loop 134 

parameters (Hc, Ms) while from the IRM acquisition curves (Fig. 3b) we derived the 135 

remanence parameters (Hcr, Msr). From their ratio’s we constructed a Day Plot (Day et al., 136 

1977) to analyse the domain state of the samples. The results of all 29 measurements show 137 

that the samples contain only pseudo single domain (PSD) grains (Fig. 3c, Table A1). There is 138 

no indication of a high coercivity mineral since all the samples are saturated at or below 200 139 

mT (Fig. 3b). 140 

A FORC diagram is also useful to assess the domain state of magnetic minerals. It 141 

additionally gives information about the local interaction fields for an assemblage of 142 

magnetic particles (Roberts et al., 2000). Three diagrams from each type of building material 143 

are shown in figure 3d. The mud-bricks from KA have a symmetrical FORC diagram with a 144 

peak distribution centered close to the origin, showing a Bc slightly lower than derived from 145 

the hysteresis analysis, with a minor spread along the Bu axis which suggests the presence of 146 

small MD or PSD grains with minimal magnetostatic interaction. The FORC distribution of the 147 

mud-bricks and vitrified mud-bricks from KT have one closed inner contour with peak at 148 

Bc=10mT and Bc=20mT, respectively, consistent with those determined from the 149 
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corresponding hysteresis loops. Both diagrams have a very narrow contour spreading along 150 

the ordinate indicating the assemblages are dominated by non-interacting PSD grains. 151 

Based on the rock magnetic measurements, we decided that all selected sets are suitable 152 

for archaeointensity experiments. 153 

4. Methods 154 

To determine the characteristic remanent magnetization direction (ChRM) at least 8 155 

specimens per site were demagnetised (Table 2a) thermally (TH) or with alternating field 156 

(AF). The demagnetization was performed with small AF or TH increments (at least 15 steps) 157 

up to a maximum of 100mT or 580°C. AF demagnetization is carried out after heating the 158 

samples to 150°C to remove possible high coercivity and low Tc minerals, or to remove 159 

possible stress in magnetite grains at low temperatures. The demagnetization results were 160 

interpreted via orthogonal projection diagrams (Zijderveld, 1967) using an eigenvector 161 

approach (Kirschvink, 1980), the mean directions of ChRMs were calculated according to 162 

Fisher (1953). The acceptance criteria for maximum angular deviation (MAD) of individual 163 

directions and the α95 of the means are taken as 10°, but values are typically much lower 164 

than that. Figure 4 and 5 show convincing examples of demagnetization diagrams for each 165 

type of material and the ChRM directions of each set.  166 

For the paleointensity measurements, we adopted three protocols. We emphasized the 167 

TT experiments, together with a fair number of MW experiments. In addition, if specimens 168 

were still available, we added a small number of multi-specimen experiments (Dekkers and 169 

Böhnel, 2006) corrected for domain state according to Fabian and Leonhardt (2010). Figure 170 

6a shows representative examples of a successful and a failed measurement from each type 171 

of experiment. These three methods were also applied to a large set of volcanics from 172 
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Hawaii by De Groot et al. (2013) who concluded that the results were remarkably accurate if 173 

the results of two or more methods mutually agreed, testifying to the importance to not 174 

adhere to just one protocol. 175 

4.1. Thermal IZZI-Thellier experiments (TT) 176 

The experiments were performed using a laboratory field of 50-60µT and a temperature 177 

range of 20-530°C. The IZZI protocol (Tauxe and Staudigel, 2004) was used with field applied 178 

parallel to the NRM of the sample which enables the detection of multi-domain behaviour 179 

and benefits from the advantages of providing the opportunity to check the consistency of IZ 180 

and ZI steps and rendering an extra pTRM tail check unnecessary (Yu and Tauxe, 2005). 181 

A custom built orientation tray was used to align each sample’s NRM with the applied 182 

field direction, reducing the effects of anisotropy during TRM acquisition (Rogers et al., 183 

1979). The results were interpreted using the NRM-TRM plots. The acceptance criteria, 184 

adopted from Coe (1978) and supplemented by those of Selkin and Tauxe (2000), are as 185 

follows: 186 

1. For the linear fit: 187 

 - the number of points used for the best fit line (N)≥5; 188 

 - the ratio of standard error of the slope to absolute value of the slope (β)<0.1; 189 

2. The NRM fraction (f)≥0.4, with an exception on specimen KT8_10 with f=0.35 where there 190 

is a sister specimen with f>0.5 and no evidence of curvature. We could not achieve f≥0.7 as 191 

recommended by Biggin (2010) because of thermo-chemical alteration occurring at higher 192 

temperatures, however, in ~80% of the measurements f>0.5 as suggested by Biggin and 193 

Thomas (2003); 194 

3. Quality factor (q)>5, where most results are higher than 10; 195 
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4. For the pTRM checks: 196 

 - number of successful pTRM checks≥3; 197 

 - the ratio of difference between the pTRM check and relevant TRM value to the 198 

length of the selected NRM-TRM segment (DRAT)<10%. 199 

In addition, the directional aspects such as the MAD and α were analysed by principle 200 

component analysis and the upper limits are set to 10%. 201 

4.2. Microwave experiments (MW) 202 

The experiments on the mud-brick samples were performed using the IZZI protocol 203 

(Tauxe and Staudigel, 2004) and a laboratory field ranging from 35-100µT, applied at least 45 204 

degrees from the NRM direction. Possible influence of anisotropy was checked for by 205 

comparing the direction of the magnetization acquired with that of the applied field. In all 206 

cases, no significant systematic offsets were observed suggesting that anisotropy was 207 

negligible. For three specimens from the shards IZIZ protocol was used with laboratory field 208 

parallel to the samples NRM (Aitken et al., 1988; Walton, 1979). In both protocols, to check 209 

for possible influence of thermo-chemical alteration, pTRM checks were performed after 210 

every two double-treatments. The same selection criteria were employed as in the TT 211 

experiments. 212 

4.3. Multi-Specimen Method (MSP) corrected for domain state (DSC) 213 

To reduce the effect of non-ideal MD behavior and progressive alteration during TT 214 

experiments, Dekkers and Böhnel (2006) proposed a method, the ‘multi-specimen parallel 215 

differential pTRM method’, here referred to as MSP-DB. The idea behind the method is 216 

simple: to overprint an ancient TRM with a laboratory pTRM induced at a temperature much 217 

lower than the Curie temperature in a laboratory field applied in the same direction as the 218 
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TRM. The initial suggestion that this protocol was domain-state independent, however, did 219 

not hold; Fabian and Leonhardt (2010) proposed an addition to the protocol to correct for 220 

MD behavior. As a rule, we apply the domain-state corrected protocol, referred to as MSP-221 

DSC. 222 

To conduct the MSP-DB and MSP-DSC measurements we used four specimens per site, 223 

simply because there were insufficient specimens. For the MSP experiments, it is first 224 

necessary to check for the absence of secondary magnetizations, and then to select a set-225 

temperature for the pTRM acquisition that is below the point where chemical alteration is 226 

significant. To determine this temperature we relied on the a priori knowledge from the rock 227 

magnetic experiments and the thermal demagnetization. The experiments were conducted 228 

using thermal demagnetiser. To induce the pTRM parallel to the NRM, we used a specially 229 

designed sample holder. Because of the limited amount of specimens we applied 4 steps. 230 

The samples were heated at either 300 or 350°C. The MSP experiments were accepted if the 231 

average progressive alteration, Ɛalt<3%. When Ɛalt>3%., the data point with the highest 232 

alteration is omitted from the group. If the average alteration after the omission is less than 233 

3%, the new best fit and its error envelopes is calculated based on three data points. For the 234 

MSP-DCS protocol there is an additional requirement where, ∆b, the difference between the 235 

theoretical (b=-1) and the actual value of y-axis intercept of the best-fit line should be 236 

smaller than 10%. If this requirement was not fulfilled, implying that the MSP-DSC protocol 237 

did not properly correct for MD behaviour, we used the MSP-DB protocol provided that the 238 

Ɛalt is still less than 3%. 239 
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5. Results 240 

5.1. ChRM Directions 241 

Şapinuva. The samples that are collected from the fallen mud-bricks (SPN1) show single 242 

component magnetite magnetizations (Fig. 4a). There is a slight inflexion in the thermal 243 

decay curve at ~350°C. This observation is coherent with what was found in the Curie curves 244 

(Fig. 2) and could imply that there could be maghemite. Out of 14 specimens, 5 samples (two 245 

being sister samples) gave inconsistent directions, indicating that the mud-brick blocks from 246 

which they were sampled were displaced after burning. When these 5 samples are 247 

discarded, the distribution becomes clustered with k>100 (Fig. 5, Table 2a). 248 

Kalehöyük. The samples from KA produced good results from its mud-bricks (Fig. 4b, c) and 249 

less conclusive or no result from the granites (Fig. 4d). Clearly, the granites have not been 250 

fully heated. The set from KA1 is composed solely of mud-bricks. The demagnetization 251 

diagrams are single component with a minor overprint removed at low temperatures (Fig. 252 

4b). The remanence is nearly completely removed at 580°C but not yet at 100 mT, which 253 

could indicate the presence of some maghemite. In the AF demagnetization diagrams, the 254 

percentage of remanence that is left after 100 mT is ~20% (Fig. 4c). From 8 cores measured, 255 

7 gave successful results producing a well-defined ChRM with high k-value of 1066. 256 

Sampling of KA2 was made on four blocks of granite and one block of mud-brick. Out of 257 

20 samples measured, 12 belonging to two different granite blocks produced single 258 

component magnetization diagrams with random -likely original- directions indicating that 259 

they were not burnt at sufficiently high temperatures. The samples from the other two 260 

granite blocks have a low-temperature (LT) due to partial heating (Fig. 4d) up to some 350°C 261 

and a high-temperature (HT) randomly directed component, whereas the mud-brick samples 262 
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are single component. The ChRM analysis of these three blocks, where mud-bricks are in 263 

agreement with the LT component of granites, yields a cluster with k>100. 264 

The samples collected from KA3 have single component demagnetization diagrams with 265 

random groups of directions indicating that the granite blocks carry their original 266 

magnetizations and hence were not sufficiently burnt (Fig. 5). This is in line with the results 267 

from the calculation of Qn where the majority of the granites have Qn<1 (Fig. 2a). 268 

The set from KA4 is also composed of only granites collected from two different blocks 269 

from the foundation of a mud-brick wall where KA1 was taken. The demagnetization 270 

diagrams are generally single component but of low quality. In some samples, there is a 271 

slight inflexion in the decay curve ~500°C which can be interpreted as a second magnetic 272 

mineral. The fact that there is an inflexion in the decay curve at that temperature, but no 273 

obvious bending in the Curie curves suggests that the reason is insufficient burning rather 274 

than a second magnetic mineral (Fig. 2, 4). The ChRM of the set displays a poor cluster with 275 

k=64, α95=6.1 and there is significant disagreement between the directions obtained from 276 

KA1 and KA4. Considering the scattered distribution of KA4, the granite blocks may have 277 

slightly moved (Fig. A3) while the mud-brick wall (KA1) is more solid and better burnt. 278 

Therefore, the results from KA1 are considered to be more reliable and directions from KA4 279 

are discarded from further analyses (Fig. 5, Table 2a). 280 

Kültepe. The samples collected from Kültepe generally produced good results, especially 281 

from the mud-bricks. The sets that are composed solely of mud-brick (KT1, KT2 and KT3) 282 

show single component magnetite magnetization with a minor overprint that is completely 283 

removed at low temperatures (Fig. 4e). This is supported with the findings from the Curie 284 

curves where the mud-bricks display an ideal magnetite magnetization and the uniform 285 
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thermal decay (Fig. 2, 4e). These three sets have well-defined ChRMs with high k values 286 

(200-600) and α95<1.7. 287 

Out of 5 sets that are composed only of ignimbrites, 4 sets (KT6, KT7, KT10 and KT11) 288 

have turned out to be not sufficiently burnt considering the single component 289 

demagnetization diagrams with random directions (Fig. 5). The samples from the last 290 

ignimbrite set, KT9, were either fully burnt providing a meaningful direction or sufficiently 291 

heated to have a clear well-determined LT component in the demagnetization diagram that 292 

we consider to represent a ChRM due to firing. This set is also of good quality with k>300, 293 

α95<2.5. 294 

There are 4 sets (KT4, KT5, KT8 and KT13) that are composed of both mud-bricks and 295 

ignimbrites. The ignimbrite samples from these sets have either single or two component 296 

demagnetization diagrams (Fig. 4f) whereas the mud-bricks are single component. The 297 

directions obtained from these two different building materials (the LT component of 298 

ignimbrites) are consistent within each set. Only 2-3 samples in each set were clear outliers 299 

(ignimbrites, obviously not sufficiently heated) and therefore excluded. 300 

There is one set that is composed fully of vitrified mudbricks (KT12). The 301 

demagnetization diagrams are single component decaying uniformly straight to the origin 302 

(Fig. 4g). The Curie curves represent an almost purely paramagnetic contribution (Fig. 2) and 303 

did not allow identification of the magnetic carrier. The demagnetization diagrams, however, 304 

show that the magnetization is fully removed at ~500°C pointing to Ti-poor magnetite. The 305 

set displays a well-defined ChRM with k=244, α95=1.3 (Fig. 5, Table 2a).  306 

Out of the 13 sets of samples from Kültepe, 9 are considered to be of good quality with 307 

IGRF corrected declinations between 348.7°-5.0° and inclinations between 41.4°-56.0°. 308 
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5.2. Archaeointensity results 309 

Archaeointensities were determined for 9 sets of samples (1 set of mud-bricks from KA, 1 310 

set of vitrified mud-bricks from KT and 7 sets of mud-bricks from KT) where 5 were 311 

successful to yield a result in all three methods. Figure 6a shows an example of a successful 312 

and a failed measurement from each method. The plots of all measurements are presented 313 

in figures A5 and A6, results are reported in table 2b and detailed statistical parameters are 314 

given in table A2 and A3. For TT and MW measurements, no MD-type behaviour is observed 315 

in the NRM-TRM plots (except for one specimen from KT4) supporting the general findings 316 

from the rock magnetic analyses. The results from different protocols reasonably agree with 317 

each other, yet, except for KT8, the MSP results are systematically lower than the other two 318 

protocols (Table 2a, Fig. 6b). This discrepancy is the highest in KT3 (up to 30% with the MW). 319 

Out of 54 TT and MW measurements, 47 are appointed to be successful (Table A2). From 8 320 

sets of MSP measurements, 7 were successful either with DSC or DB solution. No systematic 321 

differences were observed between the TT and MW results from the same sample sets. 322 

Since the cooling rate effect, if present, is expected to be enhanced in MW estimates and 323 

make them systematically higher than sister estimates using longer cooling times (Poletti et 324 

al., 2013), this agreement suggests that no cooling rate correction is required for the data as 325 

a whole.  326 

The set from the mud-bricks of KA1 has a mean intensity value of 58.5µT from 3 TT (out 327 

of 3) and 1 MW (out of 2) measurements. The single successful MW measurement is in 328 

excellent agreement with the TT measurements where the result differs by 1.4µT from the 329 

TT average. The MSP results were rejected due to alteration. 330 
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From KT1, we made one TT measurement which has failed and one MW measurement 331 

with intensity value of 60.9µT in which the MSP-DB result (58.2µT) obtained from four data 332 

points is in line with the value within 5%.  333 

The samples from KT2 and KT4 produced good quality TT results, however, failed in all 334 

MW experiments either due to noisy NRM-TRM plot, indestructible NRM or MD-curvature 335 

(KT2_3, KT2_4 and KT4_6, respectively, in figure A5). We were not able to perform the MSP 336 

method on KT2 because there were not enough samples, so we present an intensity value of 337 

54.8µT for the set, based on two TT measurements. The MSP result from KT4 is of good 338 

quality with minor alteration and ∆b<10% allowing to opt for the domain corrected solution. 339 

The set has a mean intensity value of 54.7±4.3µT based on 5 TT and an MSP-DSC result 340 

derived from four points. 341 

The entire TT (22 out of 22) and the majority of the MW measurements (13 out of 15) 342 

from the sets KT3 (mud-bricks and shards), KT5, KT8, KT13 (mud-bricks) and KT12 (vitrified 343 

mud-bricks) and have passed the selection criteria, producing high quality NRM-TRM plots. 344 

The TT and MW measurements from the mud-bricks of KT3 produced comparable results 345 

whereas the MSP result is approximately 30% lower than the average of these two methods. 346 

One specimen from the MW measurements from the set yielded a value that is too high to 347 

fit the population. Therefore, even though measurement meets the acceptance criteria it is 348 

considered to be an outlier and rejected from further analyses. The samples from KT5 349 

produced two low and two high TT results in which the lower values are in line with the 350 

MSP-DSC result and the higher values are in agreement with the MW. The set has a mean 351 

intensity value of 51.5±7.2µT. The set KT8, among all the sets, has the most consistent 352 

results in both individual sample level and mean intensities obtained from three protocols. 353 

For the MSP measurement, although the average alteration is slightly higher than the 354 
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acceptance limit (Ɛalt=3.06%), we included the result for further analyses since the data 355 

points are perfectly linear and the result is in excellent agreement with the other two 356 

protocols. 7 TT and 3 MW measurements, and a MSP-DB solution from three data points 357 

produced an average intensity of 54.8±2.0µT. The measurements from the vitrified mud-358 

bricks of KT12 produced the highest intensity value with 62.3±4.8µT from 6 measurements 359 

(4 TT, 1 MW and 4 data points from MSP-DB). The set has exceptionally high f value 360 

(fave=0.84) compared to other sets (Table A2). The samples from KT13 produced well 361 

behaved NRM-TRM diagrams from TT, acceptable results from the MW method. The set has 362 

a mean intensity value of 53.9±5.1µT obtained from 3 TT, 2 MW and a MSP-DSC result. 363 

6. Discussion 364 

6.1. ChRM directions 365 

To be able to compare our results with the existing Eastern Europe and Near & Middle 366 

East data from GEOMAGIA50 and the Turkish data (Ertepinar et al., 2012; Sarıbudak and 367 

Tarling, 1993; Sayın and Orbay, 2003), they were relocated to Kayseri. Then, all the data 368 

points are plotted against the existing data from GEOMAGIA50 and geomagnetic field 369 

models calculated at Kayseri (Fig. 7a, b). We use the latest models SHA.DIF.14k (Pavón-370 

Carrasco et al., 2014) and pfm9k.1b (Nilsson et al., 2014); both models provide error 371 

envelopes. The pfm9k.1b model uses also sediment data, and is appreciably more smoothed 372 

and has a larger error envelope than SHA.DIF.14k (Figs. 7, 8). 373 

A first observation is that the new model SHA.DIF.14k very well fits our earlier directional 374 

observations, including the large declination swing to nearly 20°E around 2000 BCE (Fig. 7a). 375 

This swing was not recorded by the CALS7k model (Korte and Constable, 2005) we then 376 

used. Nor is it recorded by the heavily smoothed pfm9k.1b model. Also all other directional 377 
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results from this earlier study fit better with the new model, for example the inclination 378 

values around 2500 BCE (Fig. 7b). Only the paleointensities (VADM) show a less perfect fit, 379 

and both our earlier data and the compiled Middle East data (Fig. 7c) are still higher than 380 

both models predict around 2600-2500 BCE.  381 

 With respect to our new data, the prediction of declination from the models agrees 382 

within error with the declination of the single direction from ~1350 BCE (SPN1) while the 383 

inclination value is lower (by more than 10°) than predicted. At this time interval 384 

SHA.DIF.14k shows a maximum in the inclination as high as 68°. The records from Greece 385 

(Tarling and Downey, 1990) and Turkey (Sayın and Orbay, 2003) around this period are on 386 

average 5° higher than our result. Because of the large error bar of SPN1, the result still falls 387 

within the range predicted by pfm9k.1b. 388 

There are two directions from ~1775 BCE, KT1 and KA1, both sites are reported to come 389 

from the same level (Kültepe Ib,) with a very well constrained age, both have high k values 390 

(300, 1066) and low α95 (1.7°, 1.8°). The prediction of SHA.DIF.14k is in perfect agreement 391 

with directions from KT1. The direction of KA1 from the allegedly time equivalent level, 392 

however, does not fit within error with SHA.DIF.14, especially the inclination is 10° lower 393 

than predicted, while only the declination falls within the error envelope of pfm9k.1b. In this 394 

interval the Turkish data (Sayın and Orbay, 2003) show a large swing in declination, up to 25° 395 

to the east compared to the models. This shallow inclination of KA1 can be explained by 396 

either an overprint of another fire event occurring in a later stage of the settlement, or a dip 397 

in inclination for the time period. This result is discussed in more detail in section 6.3. 398 

The data sets from 1875±45 BCE (KA2, KT2, KT3, KT4, KT5, KT8, KT9, KT13) show a wide 399 

range of declination (344.0°-3.9°) and inclination (41.4°-57.0°) values, in a short time interval 400 

of ~90 years. The declination results are mostly consistent with pfm9k.1b, but with respect 401 
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to SHA.DIF.14k most declinations are significantly (0-12°) to the west of the prediction. The 402 

inclinations are partly within range and partly shallower (up to 9-15°) compared to the 403 

models, but consistent with the GEOMAGIA50 data from Greece, which admittedly are very 404 

few. Naturally, it is inevitable that the models are heavily smoothed and cannot adequately 405 

represent such rapid variations, but it is noteworthy to note that around 1875 BCE, 406 

SHA.DIF.14k shows a significant dip in inclination. The relative ages of these data points are 407 

discussed in more detail below. 408 

The oldest site from Kültepe (KT12, ~2250 BCE) produced a high quality result but is 409 

poorly constrained in age. The directions fit well with both models, but the paleointensity 410 

does not (discussed below). 411 

These new results -certainly if we can constrain them better in age- are very useful to 412 

improve the resolution of the models since there is lack of data for this time periods. Only 8 413 

records are available in GEOMAGIA50 for the 700 year long period 1550-2250 BCE, from 414 

Greece to Azerbaijan, and from Moldavia/Ukraine to Egypt. Our 12 new directional records 415 

in this time interval plus the 3 results from Ertepinar et al. (2012) almost triple the database 416 

for this entire region. In addition, these high quality data sets contribute in terms of a better 417 

spatial distribution. This will reduce any bias (the local variations in the field) introduced by 418 

the few existing data sets, considering that the majority of the GEOMAGIA50 data is coming 419 

from Eastern Europe, some from the Near East (22%) and very few from the Middle East 420 

(only 2%). 421 

6.2. Archaeointensities 422 

All the archaeointensity values were converted into virtual axial dipole moments (VADM) 423 

and plotted along with the Middle East data (see introduction for references related to 424 
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Levant), Turkish data  (Ertepinar et al., 2012), the new results from Tell Atchana  (Hammond 425 

et al., 2015) and the global field models SHA.DIF.14k and pfm9k.1b (Fig. 7c). A summary of 426 

the palaeointensity results are in Table 2b, while all details can be found in Tables A2, A3. 427 

The data sets from ~1775 BCE, KA1 and KT1 produced similar intensity values, higher 428 

than the prediction of both models and the majority of the Middle East data. Also the new 429 

results of Hammond et al. (2015) are in line with the generally lower intensities found in the 430 

Middle East and the models. The fact that at least two different methods involved in the 431 

acquisition of the results (TT+MW for KA1 and MW+MSP for KT1) produce the same 432 

intensity however, gives faith that these higher intensities are reliable. There are several 433 

very similar intensities in this same period from Ben-Yosef et al. (2008a) and from 434 

GEOMAGIA50. Hence there seems to be short period of high intensities ~1775 BCE. 435 

Additional measurements from these levels would increase the reliability of the data points. 436 

 The intensity values of data sets from 1875±45 BCE (KT2, KT3, KT4, KT5, KT8, KT13) 437 

show a dispersion of <6%, the highest being 9.59*1022, and the lowest 9.00*1022. These 438 

palaeointensities are higher than the prediction of SHA.DIF.14k, GEOMAGIA50, Middle East 439 

and Hammond et al. (2015) data, although the Tell Atchana result at 1875 BCE is in line with 440 

our results.  441 

The archaeointensity result (10.89±0.84*1022Am2) from the data set from ~2250 BCE 442 

(KT12) is also significantly higher than what is predicted by the models and higher than the 443 

GEOMAGIA50 and the Middle East data. Considering the large age error, however, this high 444 

intensity could fit very well with the high intensity interval (2600-2450 BCE) found in both 445 

the Middle East and Ertepinar et al. (2012) data. 446 

Our data from the period 2600-1750 BCE (including those of our earlier study) are always 447 

significantly higher than predicted by the SHA.DIF.14k model based on archaeomagnetic and 448 
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lava flow data, and generally higher than predicted by pfm9k.1b (Fig. 7c). Again, our new 449 

data point to the existence of short-lived periods with high intensities, as observed earlier in 450 

the Levant.  451 

6.3. Relative chronology of fire events in the Assyrian Trade Colony 452 

Period sites 453 

Common true mean direction (CTMD) test developed by McFadden and McElhinny 454 

(1990) is applied to assess whether the fire events in Kültepe is a single big catastrophic 455 

event. The test is performed with Monte Carlo simulation for effectively applying the Vw 456 

statistic test (Watson, 1983). The angle (γ) between the means, and γc, the critical angle in 457 

the test is determined. If γ<γc the test is positive and the distributions share a CTMD. The 458 

test is classified as A, B, C or indeterminate, depending on the value of γc. The sets KT4 & KT8 459 

and KT5 & KT13 share a CTMD with classification A (γc<5°). The rest of the correlations are 460 

negative. Furthermore, the sites from Kalehöyük are also examined for their CTMD to 461 

compare if any of the fires in this settlement is contemporaneous with any of the fire events 462 

in Kültepe. The CTMD test of the site KA2 produced class B correlation with KT9 whereas KA1 463 

and KT5 & KT13 share a CTMD with classification A. This latter result introduces a conflict 464 

since KT5 and KT13 are from Kültepe-level II group, and the age of KA1 is supposed to be 465 

time equivalent of Kültepe-level Ib. This disagreement is discussed in more detail in the 466 

following parts. Based on the results of the CTMD test of Kültepe-level II, the areal 467 

distribution of fires is plotted in figure 8a. As can be seen from the figure, KT2, KT3 and KT9 468 

are local fires whereas KT4 & KT8 and KT5 & KT13 are larger scale fires. Therefore, we can 469 

conclude that the timing of fires in Kültepe are different and the site was not abandoned as 470 
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a result of a big catastrophic fire event as was also suggested by Sagona and Zimansky 471 

(2009). 472 

To establish a relative chronology for the fire events in Kültepe-level II (KT2, KT3, KT4, 473 

KT5, KT8, KT9, KT13 from Kültepe and KA2 from Kalehöyük), we sorted the data based on 474 

their CTMD results and then, on easternmost to westernmost declination. This best reflects 475 

the trend in the SHA.DIF.14k model at this time interval (Fig. 8b). In this scenario, the 476 

oldest/youngest age -within the age errors- is assigned to the most westerly/easterly 477 

declination while the time span between each fire event is arbitrarily divided into equal time 478 

intervals of 10 years. The corresponding inclination values fairly agree with the trend of the 479 

model but in this scenario declinations are more westerly ~1850 BCE while inclinations are 480 

steeper ~1900 BCE. It seems that the model has not (yet) enough resolution to predict these 481 

larger swings in directions. These swings are however fully compatible with observations of 482 

secular variation over the past 3000 yr. In cooperation with our earlier data and the data 483 

points from Kültepe-level Ib the relative position of KA1 is also clarified where all three 484 

components are aligned on a reasonably smooth path. Therefore, since the CTMD test is 485 

conducted only including the sites from Kültepe-level II and based only on directions, the 486 

test result does not represent the whole picture, and the assigned age for the site should be 487 

accurate. 488 

The VADM values are essentially in accordance with the trend of the curve from the 489 

SHA.DIF.14k model but systematically higher. Since the VADM values are similar, they 490 

cannot be used to put more constraints on the order of fires. The scenario presented here 491 

fits with a logical possible sequence of fire events at Kültepe, and the magnitude of 492 

geomagnetic field changes are similar to secular variation as observed today and fit within 493 

the given age limits. We do realise however that other scenarios are possible, and that the 494 
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time constraints within the given age uncertainty do not allow this or any other particular 495 

scenario to be robust. For example, in a scenario where the data sets are sorted on 496 

increasing inclinations based on the mild increasing trend in the model, results in more 497 

abrupt changes compared to the first scenario, and the declinations display erratic jumps of 498 

5-15° within 10 year time intervals.  499 

If we are to compare different scenarios, we favour the scenario where both declination 500 

and inclination change gradually and the abrupt and erratic changes in the directions in the 501 

other scenarios in such a short time interval are unlikely to occur. Our confidence in this 502 

preference has increased when gufm1 model (Jackson et al., 2000) is examined, which is 503 

constructed for the time interval of 1590-1990 CE, using the measurements from old ship 504 

logs, survey data and observatories. This model, although being extremely young compared 505 

to our data points, has a very high temporal resolution that can detect changes in time scale 506 

of years. Therefore, it sets an example how fast the directions can change in short periods of 507 

time. 508 

7. Conclusions 509 

This study concentrated on the characterization of the full vector magnetic field over 510 

Anatolia for Assyrian and Hittite periods. The rock magnetic properties are checked using the 511 

room temperature susceptibilities and Curie curves for the directional analyses and 512 

additional hysteresis parameters, IRM acquisition and FORC diagrams for the intensity 513 

experiments. The samples are found to be suitable for archaeomagnetic experiments.  514 

The ChRMs obtained (12 out of 18) gave good quality results with k>100 and α95<5 (Table 515 

2a). The remaining 6 sets are either displaced or not sufficiently burnt. Together with our 516 
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earlier results, we triple the amount of directional results in the period 2250-1550 BCE for 517 

the entire region. 518 

The archaeointensity experiments were carried out on 9 sets of samples using three 519 

different methods: thermal IZZI-Thellier, microwave, and the multi-specimen technique and 520 

they produced comparable results (Table 2b). Yet, the majority of the MSP results are 521 

systematically lower than the other two protocols except in KT8. Out of these 9 sets, 5 were 522 

successful to yield a result in all three methods.  523 

The results are compared with the existing data from the region and with the global 524 

geomagnetic field models pfm9k.1b and SHA.DIF.14k. It appears that pfm9k.1b is over 525 

smoothed and has a large error envelope that accommodates most of the data presented 526 

here, with the exception of some of the palaeointensity results. The SHA.DIF.14k model is 527 

remarkably consistent with the directional data of this and our earlier study. The 528 

palaeointensities we find however are invariably higher than the predictions of this model. 529 

Finally, we assess the relative order of fire events in Kültepe with the help of the field 530 

models and the CTMD test and conclude that the timing of fire events are different and the 531 

abandonment of the site was not result of a catastrophic fire event. 532 

 533 
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Figure Captions 540 

Figure 1. Map showing the sampling locations (red circles) and the boundaries of Hittite and 541 

Assyrian Kingdoms. Green circles are the previously published data from Anatolia (Ertepinar 542 

et al., 2012). White circles refer to the locations of data points from GEOMAGIA50v2  543 

(Donadini et al., 2006; Donadini et al., 2009; Korhonen et al., 2008) within a circle of ~1600 544 

km from Kültepe (Kayseri province, 38.85°N and 35.63°E), the approximate center of Turkey 545 

– which is used as the reference point. 546 

Figure 2. (a) The Koenigsberger ratio (Qn) of remanent versus induced magnetization 547 

(Dunlop and Özdemir, 1997). The black lines show the Koenigsberger ratio isolines. For the 548 

materials other than granites of KA, the values cluster at 10<Qn<100 providing a positive 549 

stability test. (b – g) Representative Curie curves for different groups of magnetic 550 

composition or behaviour: (b) mud-brick and (c) granite sample from KA, (d) mud-brick 551 

sample from KT all showing ideal magnetite magnetization with a single Curie point at 552 

~580°C; (e) mud-brick sample from SPN with Tc at ~580°C pointing to the presence of 553 

magnetite as the main magnetic carrier; the extra inflexion in both curves indicate a 554 

secondary carrier (at ~350°C) which could indicate possible presence of maghemite, 555 

titanomagnetite or Al substituted magnetite (Dunlop and Özdemir, 1997); (f) Vitrified mud-556 

bricks from KT12 that exhibit an almost reversible Curie balance curve with strong 557 

paramagnetic contribution; (g) ignimbrite showing a major difference between heating and 558 

cooling curves resulting in irreversible loss in magnetization up to 80%. 559 

Figure 3. (a) Hysteresis loops (displayed after the paramagnetic and diamagnetic correction 560 

on a mass-specific basis) and (b) IRM acquisition curves for three different material types: 561 

mud-bricks from KA, mud-bricks from KT and vitrified mud-bricks from KT; (c) Day Plot  (Day 562 
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et al., 1977) showing all magnetic mineral assemblages are composed of PSD grains; (d) 563 

representative FORC diagrams for each type of material plotted with a smoothing factor (SF) 564 

of 3 for the mud-bricks of KA and KT and SF=4 for the vitrified mud-bricks of KT. The contour 565 

interval is taken as 10. The peak distributions are centered at +0, 10 and 20 mT respectively. 566 

Figure 4. Representative examples of demagnetization diagrams from each type of material.  567 

Closed (open) symbols are the projection of the vector end-points on the horizontal 568 

(vertical) plane. The corresponding temperature (in °C) or the alternating field (in mT) values 569 

are shown. In parentheses the method used to demagnetize the sample. Normalized 570 

intensity decay plots are also shown on either side of the demagnetization diagram. (a) 571 

Single component magnetite magnetization from the mud-bricks of SPN; (b, c) Th/AF 572 

demagnetization diagram of single component magnetite magnetization from the mud-573 

bricks of KA with possible contribution of maghemite; (d) two component (LT and HT) 574 

demagnetization diagram from the granites of KA; (e) Single component demagnetization 575 

diagram from the mud-bricks of KT; (f) single component and two component 576 

demagnetization diagrams from the ignimbrites of KT; (g) uniformly decaying single 577 

component demagnetization diagram from the vitrified mud-bricks of KT. 578 

Figure 5. Equal area projections of the characteristic remanent magnetization direction of 579 

each set. The red circles are α95 cones of confidence. N is the number of samples, k is 580 

precision parameter, and D/I is the declination/inclination. Below are the rejected data sets 581 

due to low k or high α95 value. 582 

 Figure 6. (a) Representative examples of a successful and a failed measurement obtained 583 

from three different paleointensity methods. The NRM-TRM plots of a thermal IZZI-Thellier 584 

(TT) and a microwave (MW) experiment are shown with associated orthogonal vector plots 585 

in core coordinates. Solid red (open blue) symbols are horizontal (vertical) planes. Diagrams 586 
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are normalized to initial NRM intensity. The arrows represent the pTRM checks engaged in 587 

every two double-treatments. P/AP/SP stands for the applied field direction 588 

parallel/antiparallel/subperpendicular to the samples NRM. The relevant temperature steps 589 

for TT experiments are shown on the side of the data point. ThellierTool4.0 (Leonhardt et al., 590 

2004) was used to plot the data. On the left an accepted ‘domain corrected’ solution (MSP-591 

DSC) and a rejected ‘parallel differential pTRM’ solution (MSP-DB) of multi-specimen method 592 

are shown. (b) Comparison of the results from three different protocols. The site means are 593 

shown as histograms and the individual measurements are represented in diamonds and 594 

circles. 595 

Figure 7. Comparison of (a) inclination and (b) declination results of this study (red) with the 596 

Eastern Europe and Near & Middle East archaeomagnetic data from GEOMAGIA50v2 (grey), 597 

the Turkish data (orange and blue), and the global geomagnetic field models pfm9k.1b and 598 

SHA.DIF.14k;  (c) mean site VADM values of this study (red) plotted against the data from 599 

GEOMAGIA50v2 (grey), Middle East (pink circles, orange triangles and light green squares), 600 

Turkey data (blue circles and green diamonds) from Ertepinar et al. (2012) and Hammond et 601 

al. (2015),respectively, along with the two global geomagnetic field models. All data are 602 

recalculated to Kayseri (see caption to Fig. 1). 603 

Figure 8. (a) Areal distribution of fire events shown on an aerial photograph of site Kültepe; 604 

(b) declination, inclination and VADM distribution of Kültepe level II data points (green dots) 605 

as sorted from the most westerly to the most easterly declination based on the westerly 606 

trend in the SHA.DIF.14k model for the period of ~2100-1850 BCE. The blue dots are data 607 

points from Kültepe-level Ib and the black dots are Turkey data from Ertepinar et al. (2012). 608 

The time intervals between sites in Kültepe-level II are arbitrarily taken as 10 years. 609 
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