2,637 research outputs found
High-throughput amplicon sequencing reveals distinct communities within a corroding concrete sewer system
This study investigated the variation in microbially induced concrete corrosion communities at different circumferential locations of a real sewer pipe and the effects of a wastewater flooding event on the community. Three distinct microbial community groups were found in different corrosion samples. The physico-chemical properties of the corrosion layers and the microbial communities were distinct for the cross-sectional positions within the pipe, ie ceiling, wall and tidal zones. The microbial communities detected from the same positions in the pipe were consistent over the length of the pipe, as well as being consistent between the replicate pipes. The dominating ceiling communities were members of the bacterial orders Rhodospirillales, Acidithiobacillales, Actinomycetales, Xanthomonadales and Acidobacteriales. The wall communities were composed of members of the Xanthomonadales, Hydrogenophilales, Chromatiales and Sphingobacteriales. The tidal zones were dominated by eight bacterial and one archaeal order, with the common physiological trait of anaerobic metabolism. Sewage flooding within the sewer system did not change the tidal and wall communities, although the corrosion communities in ceiling samples were notably different, becoming more similar to the wall and tidal samples. This suggests that sewage flooding has a significant impact on the corrosion community in sewers
The Impact of Flavour Changing Neutral Gauge Bosons on B->X_s gamma
The branching ratio of the rare decay B->X_s gamma provides potentially
strong constraints on models beyond the Standard Model. Considering a general
scenario with new heavy neutral gauge bosons, present in particular in Z' and
gauge flavour models, we point out two new contributions to the B->X_s gamma
decay. The first one originates from one-loop diagrams mediated by gauge bosons
and heavy exotic quarks with electric charge -1/3. The second contribution
stems from the QCD mixing of neutral current-current operators generated by
heavy neutral gauge bosons and the dipole operators responsible for the B->X_s
gamma decay. The latter mixing is calculated here for the first time. We
discuss general sum rules which have to be satisfied in any model of this type.
We emphasise that the neutral gauge bosons in question could also significantly
affect other fermion radiative decays as well as non-leptonic two-body B
decays, epsilon'/epsilon, anomalous (g-2)_mu and electric dipole moments.Comment: 31 pages, 5 figures; version published on JHEP; added magic QCD
numbers for flavour-violating Z gauge boson contribution to B -> X_s gamm
Probing anomalous tbW couplings in single-top production using top polarization at the Large Hadron Collider
We study the sensitivity of the Large Hadron Collider (LHC) to anomalous tbW
couplings in single-top production in association with a W^- boson followed by
semileptonic decay of the top. We calculate top polarization and the effects of
these anomalous couplings to it at two centre-of-mass (cm) energies of 7 TeV
and 14 TeV. As a measure of top polarization, we look at various laboratory
frame distributions of its decay products, viz., lepton angular and energy
distributions and b-quark angular distributions, without requiring
reconstruction of the rest frame of the top, and study the effect of anomalous
couplings on these distributions. We construct certain asymmetries to study the
sensitivity of these distributions to anomalous tbW couplings. We find that
1\sigma limits on real and imaginary parts of the dominant anomalous coupling
Ref_{2R} which may be obtained by utilizing these asymmetries at the LHC with
cm energy of 14 TeV and an integrated luminosity of 10 fb^{-1} will be
significantly better than the expectations from direct measurements of cross
sections and some other variables at the LHC and over an order of magnitude
better than the indirect limits.Comment: 25 pages, 34 figure
Turbulence and galactic structure
Interstellar turbulence is driven over a wide range of scales by processes
including spiral arm instabilities and supernovae, and it affects the rate and
morphology of star formation, energy dissipation, and angular momentum transfer
in galaxy disks. Star formation is initiated on large scales by gravitational
instabilities which control the overall rate through the long dynamical time
corresponding to the average ISM density. Stars form at much higher densities
than average, however, and at much faster rates locally, so the slow average
rate arises because the fraction of the gas mass that forms stars at any one
time is low, ~10^{-4}. This low fraction is determined by turbulence
compression, and is apparently independent of specific cloud formation
processes which all operate at lower densities. Turbulence compression also
accounts for the formation of most stars in clusters, along with the cluster
mass spectrum, and it gives a hierarchical distribution to the positions of
these clusters and to star-forming regions in general. Turbulent motions appear
to be very fast in irregular galaxies at high redshift, possibly having speeds
equal to several tenths of the rotation speed in view of the morphology of
chain galaxies and their face-on counterparts. The origin of this turbulence is
not evident, but some of it could come from accretion onto the disk. Such high
turbulence could help drive an early epoch of gas inflow through viscous
torques in galaxies where spiral arms and bars are weak. Such evolution may
lead to bulge or bar formation, or to bar re-formation if a previous bar
dissolved. We show evidence that the bar fraction is about constant with
redshift out to z~1, and model the formation and destruction rates of bars
required to achieve this constancy.Comment: in: Penetrating Bars through Masks of Cosmic Dust: The Hubble Tuning
Fork strikes a New Note, Eds., K. Freeman, D. Block, I. Puerari, R. Groess,
Dordrecht: Kluwer, in press (presented at a conference in South Africa, June
7-12, 2004). 19 pgs, 5 figure
Emergent global patterns of ecosystem structure and function from a mechanistic general ecosystem model
Anthropogenic activities are causing widespread degradation of ecosystems worldwide, threatening the ecosystem services upon which all human life depends. Improved understanding of this degradation is urgently needed to improve avoidance and mitigation measures. One tool to assist these efforts is predictive models of ecosystem structure and function that are mechanistic: based on fundamental ecological principles. Here we present the first mechanistic General Ecosystem Model (GEM) of ecosystem structure and function that is both global and applies in all terrestrial and marine environments. Functional forms and parameter values were derived from the theoretical and empirical literature where possible. Simulations of the fate of all organisms with body masses between 10 µg and 150,000 kg (a range of 14 orders of magnitude) across the globe led to emergent properties at individual (e.g., growth rate), community (e.g., biomass turnover rates), ecosystem (e.g., trophic pyramids), and macroecological scales (e.g., global patterns of trophic structure) that are in general agreement with current data and theory. These properties emerged from our encoding of the biology of, and interactions among, individual organisms without any direct constraints on the properties themselves. Our results indicate that ecologists have gathered sufficient information to begin to build realistic, global, and mechanistic models of ecosystems, capable of predicting a diverse range of ecosystem properties and their response to human pressures
Extraction of bodily features for gait recognition and gait attractiveness evaluation
This is the author's accepted manuscript. The final publication is available at Springer via
http://dx.doi.org/10.1007/s11042-012-1319-2. Copyright @ 2012 Springer.Although there has been much previous research on which bodily features are most important in gait analysis, the questions of which features should be extracted from gait, and why these features in particular should be extracted, have not been convincingly answered. The primary goal of the study reported here was to take an analytical approach to answering these questions, in the context of identifying the features that are most important for gait recognition and gait attractiveness evaluation. Using precise 3D gait motion data obtained from motion capture, we analyzed the relative motions from different body segments to a root marker (located on the lower back) of 30 males by the fixed root method, and compared them with the original motions without fixing root. Some particular features were obtained by principal component analysis (PCA). The left lower arm, lower legs and hips were identified as important features for gait recognition. For gait attractiveness evaluation, the lower legs were recognized as important features.Dorothy Hodgkin Postgraduate Award and HEFCE
Search for the Decays B^0 -> D^{(*)+} D^{(*)-}
Using the CLEO-II data set we have searched for the Cabibbo-suppressed decays
B^0 -> D^{(*)+} D^{(*)-}. For the decay B^0 -> D^{*+} D^{*-}, we observe one
candidate signal event, with an expected background of 0.022 +/- 0.011 events.
This yield corresponds to a branching fraction of Br(B^0 -> D^{*+} D^{*-}) =
(5.3^{+7.1}_{-3.7}(stat) +/- 1.0(syst)) x 10^{-4} and an upper limit of Br(B^0
-> D^{*+} D^{*-}) D^{*\pm} D^\mp and
B^0 -> D^+ D^-, no significant excess of signal above the expected background
level is seen, and we calculate the 90% CL upper limits on the branching
fractions to be Br(B^0 -> D^{*\pm} D^\mp) D^+
D^-) < 1.2 x 10^{-3}.Comment: 12 page postscript file also available through
http://w4.lns.cornell.edu/public/CLNS, submitted to Physical Review Letter
Virulence related sequences: insights provided by comparative genomics of Streptococcus uberis of differing virulence
Background: Streptococcus uberis, a Gram-positive, catalase-negative member of the family Streptococcaceae is an important environmental pathogen responsible for a significant proportion of subclinical and clinical bovine intramammary infections. Currently, the genome of only a single reference strain (0140J) has been described. Here we present a comparative analysis of complete draft genome sequences of an additional twelve S. uberis strains.
Results: Pan and core genome analysis revealed the core genome common to all strains to be 1,550 genes in 1,509 orthologous clusters, complemented by 115-246 accessory genes present in one or more S. uberis strains but absent in the reference strain 0140J. Most of the previously predicted virulent genes were present in the core genome of all 13 strains but gene gain/loss was observed between the isolates in CDS associated with clustered regularly interspaced short palindromic repeats (CRISPRs), prophage and bacteriocin production. Experimental challenge experiments confirmed strain EF20 as non-virulent; only able to infect in a transient manner that did not result in clinical mastitis. Comparison of the genome sequence of EF20 with the validated virulent strain 0140J identified genes associated with virulence, however these did not relate clearly with clinical/non-clinical status of infection.
Conclusion: The gain/loss of mobile genetic elements such as CRISPRs and prophage are a potential driving force for evolutionary change. This first “whole-genome” comparison of strains isolated from clinical vs non-clinical intramammary infections including the type virulent vs non-virulent strains did not identify simple gene gain/loss rules that readily explain, or be confidently associated with, differences in virulence. This suggests that a more complex dynamic determines infection potential and clinical outcome not simply gene content
First Observation of and Decays
We have observed new channels for decays with an in the final
state. We study 3-prong tau decays, using the and
\eta\to 3\piz decay modes and 1-prong decays with two \piz's using the
channel. The measured branching fractions are
\B(\tau^{-}\to \pi^{-}\pi^{-}\pi^{+}\eta\nu_{\tau})
=(3.4^{+0.6}_{-0.5}\pm0.6)\times10^{-4} and \B(\tau^{-}\to
\pi^{-}2\piz\eta\nu_{\tau}
=(1.4\pm0.6\pm0.3)\times10^{-4}. We observe clear evidence for
substructure and measure \B(\tau^{-}\to
f_1\pi^{-}\nu_{\tau})=(5.8^{+1.4}_{-1.3}\pm1.8)\times10^{-4}. We have also
searched for production and obtain 90% CL upper limits
\B(\tau^{-}\to \pi^{-}\eta'\nu_\tau)<7.4\times10^{-5} and \B(\tau^{-}\to
\pi^{-}\piz\eta'\nu_\tau)<8.0\times10^{-5}.Comment: 11 page postscript file, postscript file also available through
http://w4.lns.cornell.edu/public/CLN
- …
