We study the sensitivity of the Large Hadron Collider (LHC) to anomalous tbW
couplings in single-top production in association with a W^- boson followed by
semileptonic decay of the top. We calculate top polarization and the effects of
these anomalous couplings to it at two centre-of-mass (cm) energies of 7 TeV
and 14 TeV. As a measure of top polarization, we look at various laboratory
frame distributions of its decay products, viz., lepton angular and energy
distributions and b-quark angular distributions, without requiring
reconstruction of the rest frame of the top, and study the effect of anomalous
couplings on these distributions. We construct certain asymmetries to study the
sensitivity of these distributions to anomalous tbW couplings. We find that
1\sigma limits on real and imaginary parts of the dominant anomalous coupling
Ref_{2R} which may be obtained by utilizing these asymmetries at the LHC with
cm energy of 14 TeV and an integrated luminosity of 10 fb^{-1} will be
significantly better than the expectations from direct measurements of cross
sections and some other variables at the LHC and over an order of magnitude
better than the indirect limits.Comment: 25 pages, 34 figure