153 research outputs found

    Attentional preparation for a lateralized visual distractor: Behavioral and fMRI evidence

    Get PDF
    Attending to the location of all expected visual target call lead to anticipatory activations In spatiotopic occipital cortex, emerging before target onset. But less is known about how the brain may prepare for a distractor at a known location remote from the target. In a psychophysical experiment, we found that trial-to-trial advance knowledge about the presence of a distractor in the target-opposite hemifield significantly reduced its behavioral cost. In a subsequent functional magnetic resonance imaging experiment with similar task and stimuli, We found anticipatory activations in the occipital cortex contralateral to the expected distractor, but no additional target modulation, when participants were given advance information about a distractor's subsequent presence and location, Several attention-related control structures (frontal eye fields and superior parietal cortex) were active during attentional preparation for all trials, whereas the left superior prefrontal and right angular gyri were additionally activated when a distractor Was anticipated. The right temporoparietal junction showed stronger functional Coupling with occipital regions during preparation for trials with all isolated tat-get than for trials with a distractor expected. These results show that anticipation of a visual distractor at a known location, remote from the target, call lead to (1) a reduction in the behavioral cost of that distractor, (2) preparatory Modulation of the occipital cortex contralateral to the location of the expected distractor, and (3) anticipatory activation of distinct parietal and frontal brain structures. These findings indicate that specific components of preparatory visual attention may be devoted to minimizing the impact of distractors, not just to enhancements of target processing

    Readout from iconic memory involves similar neural processes as selective spatial attention

    Get PDF
    Iconic memory and spatial attention are often considered as distinct topics, but may have functional similarities. Here we provide fMRI evidence for some common underlying neural effects. Participants judged three visual stimuli in one hemifield of a bilateral array comprising six stimuli. The relevant hemifield for partial report was indicated by an auditory cue, administered either before the visual array (pre-cues, spatial attention) or shortly after (post-cues, iconic memory). Pre- and post-cues led to similar activity modulations in lateral occipital cortex, contralateral to the cued side, indicating that readout from iconic memory can have similar neural effects to spatial attention. We also found common bilateral activation of a fronto-parietal network for post-cue and pre-cue trials. These neuroimaging data suggest that some common neural mechanisms underlie selective spatial attention and readout from iconic memory. Some differences were also found, with post-cues leading to higher activity in right middle frontal gyrus

    The role of contralesional dorsal premotor cortex after stroke as studied with concurrent TMS-fMRI.

    Get PDF
    Contralesional dorsal premotor cortex (cPMd) may support residual motor function following stroke. We performed two complementary experiments to explore how cPMd might perform this role in a group of chronic human stroke patients. First, we used paired-coil transcranial magnetic stimulation (TMS) to establish the physiological influence of cPMd on ipsilesional primary motor cortex (iM1) at rest. We found that this influence became less inhibitory/more facilitatory in patients with greater clinical impairment. Second, we applied TMS over cPMd during functional magnetic resonance imaging (fMRI) in these patients to examine the causal influence of cPMd TMS on the whole network of surviving cortical motor areas in either hemisphere and whether these influences changed during affected hand movement. We confirmed that hand grip-related activation in cPMd was greater in more impaired patients. Furthermore, the peak ipsilesional sensorimotor cortex activity shifted posteriorly in more impaired patients. Critical new findings were that concurrent TMS-fMRI results correlated with the level of both clinical impairment and neurophysiological impairment (i.e., less inhibitory/more facilitatory cPMd-iM1 measure at rest as assessed with paired-coil TMS). Specifically, greater clinical and neurophysiological impairment was associated with a stronger facilitatory influence of cPMd TMS on blood oxygenation level-dependent signal in posterior parts of ipsilesional sensorimotor cortex during hand grip, corresponding to the posteriorly shifted sensorimotor activity seen in more impaired patients. cPMd TMS was not found to influence activity in other brain regions in either hemisphere. This state-dependent influence on ipsilesional sensorimotor regions may provide a mechanism by which cPMd supports recovered function after stroke

    New approaches to the study of human brain networks underlying spatial attention and related processes

    Get PDF
    Cognitive processes, such as spatial attention, are thought to rely on extended networks in the human brain. Both clinical data from lesioned patients and fMRI data acquired when healthy subjects perform particular cognitive tasks typically implicate a wide expanse of potentially contributing areas, rather than just a single brain area. Conversely, evidence from more targeted interventions, such as transcranial magnetic stimulation (TMS) or invasive microstimulation of the brain, or selective study of patients with highly focal brain damage, can sometimes indicate that a single brain area may make a key contribution to a particular cognitive process. But this in turn raises questions about how such a brain area may interface with other interconnected areas within a more extended network to support cognitive processes. Here, we provide a brief overview of new approaches that seek to characterise the causal role of particular brain areas within networks of several interacting areas, by measuring the effects of manipulations for a targeted area on function in remote interconnected areas. In human participants, these approaches include concurrent TMS-fMRI and TMS-EEG, as well as combination of the focal lesion method in selected patients with fMRI and/or EEG measures of the functional impact from the lesion on interconnected intact brain areas. Such approaches shed new light on how frontal cortex and parietal cortex modulate sensory areas in the service of attention and cognition, for the normal and damaged human brain

    You made him be alive: Children’s perceptions of animacy in a humanoid robot

    Get PDF
    Social robots are becoming more sophisticated; in many cases they offer complex, autonomous interactions, responsive behaviors, and biomimetic appearances. These features may have significant impact on how people perceive and engage with robots; young children may be particularly influenced due to their developing ideas of agency. Young children are considered to hold naive beliefs of animacy and a tendency to mis-categorise moving objects as being alive but, with development, children can demonstrate a biological understanding of animacy. We experimentally explore the impact of children’s age and a humanoid’s movement on children’s perceptions of its animacy. Our humanoid’s behavior varied in apparent autonomy, from motionless, to manually operated, to covertly operated. Across conditions, younger children rated the robot as being significantly more person-like than older children did. We further found an interaction effect: younger children classified the robot as significantly more machine-like if they observed direct operation in contrast observing the motionless or apparently autonomous robot. Our findings replicate field results, supporting the modal model of the developmental trajectory for children’s understanding of animacy. We outline a program of research to both deepen the theoretical understanding of children’s animacy beliefs and develop robotic characters appropriate across key stages of child development

    Galaxy And Mass Assembly (GAMA): M-star-R-e relations of z=0 bulges, discs and spheroids

    Get PDF
    We perform automated bulge + disc decomposition on a sample of ~7500 galaxies from the Galaxy And Mass Assembly (GAMA) survey in the redshift range of 0.002<z<0.06 using SIGMA, a wrapper around GALFIT3. To achieve robust profile measurements we use a novel approach of repeatedly fitting the galaxies, varying the input parameters to sample a large fraction of the input parameter space. Using this method we reduce the catastrophic failure rate significantly and verify the confidence in the fit independently of \chi^2 Additionally, using the median of the final fitting values and the 16^{th}$ and 84^{th} percentile produces more realistic error estimates than those provided by GALFIT, which are known to be underestimated. We use the results of our decompositions to analyse the stellar mass - half-light radius relations of bulges, discs and spheroids. We further investigate the association of components with a parent disc or elliptical relation to provide definite z=0 disc and spheroid M-star-R-e} relations. We conclude by comparing our local disc and spheroid M-star-R-e} to simulated data from EAGLE and high redshift data from CANDELS-UDS. We show the potential of using the mass-size relation to study galaxy evolution in both cases but caution that for a fair comparison all data sets need to be processed and analysed in the same manner

    Galaxy And Mass Assembly (GAMA): stellar mass functions by Hubble type

    Get PDF
    We present an estimate of the galaxy stellar mass function and its division by morphological type in the local (0.025 < z < 0.06) Universe. Adopting robust morphological classifications as previously presented (Kelvin et al.) for a sample of 3, 727 galaxies taken from the Galaxy And Mass Assembly survey, we define a local volume and stellar mass limited sub-sample of 2, 711 galaxies to a lower stellar mass limit of M = 109.0M_. We confirm that the galaxy stellar mass function is well described by a double Schechter function given by M_ = 1010.64M_, _1 = −0.43, __1 = 4.18 dex−1Mpc−3, _2 = −1.50 and __2 = 0.74 dex−1Mpc−3. The constituent morphological-type stellar mass functions are well sampled above our lower stellar mass limit, excepting the faint little blue spheroid population of galaxies. We find approximately 71+3−4% of the stellar mass in the local Universe is found within spheroid dominated galaxies; ellipticals and S0-Sas. The remaining 29+4−3% falls predominantly within late type disk dominated systems, Sab-Scds and Sd-Irrs. Adopting reasonable bulge-to-total ratios implies that approximately half the stellar mass today resides in spheroidal structures, and half in disk structures. Within this local sample, we find approximate stellar mass proportions for E : S0 Sa : Sab-Scd : Sd-Irr of 34 : 37 : 24 : 5

    Galaxy And Mass Assembly (GAMA): stellar mass functions by Hubble type

    Get PDF
    We present an estimate of the galaxy stellar mass function and its division by morphological type in the local (0.025 < z < 0.06) Universe. Adopting robust morphological classifications as previously presented (Kelvin et al.) for a sample of 3, 727 galaxies taken from the Galaxy And Mass Assembly survey, we define a local volume and stellar mass limited sub-sample of 2, 711 galaxies to a lower stellar mass limit of M = 109.0M_. We confirm that the galaxy stellar mass function is well described by a double Schechter function given by M_ = 1010.64M_, _1 = −0.43, __1 = 4.18 dex−1Mpc−3, _2 = −1.50 and __2 = 0.74 dex−1Mpc−3. The constituent morphological-type stellar mass functions are well sampled above our lower stellar mass limit, excepting the faint little blue spheroid population of galaxies. We find approximately 71+3−4% of the stellar mass in the local Universe is found within spheroid dominated galaxies; ellipticals and S0-Sas. The remaining 29+4−3% falls predominantly within late type disk dominated systems, Sab-Scds and Sd-Irrs. Adopting reasonable bulge-to-total ratios implies that approximately half the stellar mass today resides in spheroidal structures, and half in disk structures. Within this local sample, we find approximate stellar mass proportions for E : S0 Sa : Sab-Scd : Sd-Irr of 34 : 37 : 24 : 5
    corecore