3,090 research outputs found

    Radiometric correction of LANDSAT data

    Get PDF
    The author has identified the following significant results. The six independent sensors of the multispectral band scanner are supposed to be identical; however, in actual practice, they may have different gain settings and offset factors, which result in the effect known as stripping (black lines at regular intervals) of the imagery. A simple two parameter method to correct the gain settings and offset factors of each of the sensors with respect to one sensor, taken as reference, was developed. This method assumes: (1) the response of a detector varies linearly with the radiance of radiation received, and (2) the means, as well as the standard deviations, of a reasonably large number of pixels, in a given wavelength band, are equal for each of the detectors for the radiometrically corrected data

    Scaling laws for the decay of multiqubit entanglement

    Full text link
    We investigate the decay of entanglement of generalized N-particle Greenberger-Horne-Zeilinger (GHZ) states interacting with independent reservoirs. Scaling laws for the decay of entanglement and for its finite-time extinction (sudden death) are derived for different types of reservoirs. The latter is found to increase with the number of particles. However, entanglement becomes arbitrarily small, and therefore useless as a resource, much before it completely disappears, around a time which is inversely proportional to the number of particles. We also show that the decay of multi-particle GHZ states can generate bound entangled states.Comment: Minor mistakes correcte

    Fault-based refinement-testing for CSP

    Get PDF

    Multipartite fully-nonlocal quantum states

    Full text link
    We present a general method to characterize the quantum correlations obtained after local measurements on multipartite systems. Sufficient conditions for a quantum system to be fully-nonlocal according to a given partition, as well as being (genuinely) multipartite fully-nonlocal, are derived. These conditions allow us to identify all completely-connected graph states as multipartite fully-nonlocal quantum states. Moreover, we show that this feature can also be observed in mixed states: the tensor product of five copies of the Smolin state, a biseparable and bound entangled state, is multipartite fully-nonlocal.Comment: 5 pages, 1 figure. Version published in PRA. Note that it does not contain all the results from the previous version; these will be included in a later, more general, pape

    Quasi-one-dimensional system as a high-temperature superconductor

    Get PDF
    It is well-known that quasi-one-dimensional superconductors suffer from the pairing fluctuations that significantly reduce the superconducting temperature or even completely suppress any coherent behavior. Here we demonstrate that a coupling to a robust pair condensate changes the situation dramatically. In this case the quasi-one-dimensional system can be a high temperature superconductor governed by the proximity to the Lifshitz transition at which the Fermi level approaches the lower edge of the single-particle spectrum.Comment: 5 pages, 1 figur

    Multipartite quantum nonlocality under local decoherence

    Full text link
    We study the nonlocal properties of two-qubit maximally-entangled and N-qubit Greenberger-Horne-Zeilinger states under local decoherence. We show that the (non)resilience of entanglement under local depolarization or dephasing is not necessarily equivalent to the (non)resilience of Bell-inequality violations. Apart from entanglement and Bell-inequality violations, we consider also nonlocality as quantified by the nonlocal content of correlations, and provide several examples of anomalous behaviors, both in the bipartite and multipartite cases. In addition, we study the practical implications of these anomalies on the usefulness of noisy Greenberger-Horne-Zeilinger states as resources for nonlocality-based physical protocols given by communication complexity problems. There, we provide examples of quantum gains improving with the number of particles that coexist with exponentially-decaying entanglement and non-local contents.Comment: 6 pages, 4 figure

    Plasmon polaritons in photonic superlattices containing a left-handed material

    Get PDF
    We analyze one-dimensional photonic superlattices which alternate layers of air and a left-handed material. We assume Drude-type dispersive responses for the dielectric permittivity and magnetic permeability of the left-handed material. Maxwell's equations and the transfer-matrix technique are used to derive the dispersion relation for the propagation of obliquely incident optical fields. The photonic dispersion indicates that the growth-direction component of the electric (or magnetic) field leads to the propagation of electric (or magnetic) plasmon polaritons, for either TE or TM configurations. Furthermore, we show that if the plasma frequency is chosen within the photonic =0=0 zeroth-order bandgap, the coupling of light with plasmons weakens considerably. As light propagation is forbidden in that particular frequency region, the plasmon-polariton mode reduces to a pure plasmon mode.Comment: 4 pages, 4 figure

    Circus Models for Safety-Critical Java Programs

    Get PDF
    Safety-critical Java (SCJ) is a restriction of the real-time specification for Java to support the development and certification of safety-critical applications. The SCJ technology specification is the result of an international effort from industry and academia. In this paper, we present a formalization of the SCJ Level 1 execution model, formalize a translation strategy from SCJ into a refinement notation and describe a tool that largely automates the generation of the formal models. Our modelling language is part of the Circus family; at the core, we have Z, communicating sequential processes and Morgan’s calculus, but we also use object-oriented and timed constructs from the OhCircus and Circus Time variants. Our work is an essential ingredient for the development of refinement-based reasoning techniques for SCJ

    Operational interpretations of quantum discord

    Get PDF
    Quantum discord quantifies non-classical correlations going beyond the standard classification of quantum states into entangled and unentangled ones. Although it has received considerable attention, it still lacks any precise interpretation in terms of some protocol in which quantum features are relevant. Here we give quantum discord its first operational meaning in terms of entanglement consumption in an extended quantum state merging protocol. We further relate the asymmetry of quantum discord with the performance imbalance in quantum state merging and dense coding.Comment: v4: 5 pages, 1 fig. Refs added, text improved. Main results unchanged. See arXiv:1008.4135v2 for a related work. v5: close to the published versio
    corecore