1,545 research outputs found
An artificial immune system for fuzzy-rule induction in data mining
This work proposes a classification-rule discovery algorithm integrating artificial immune systems and fuzzy systems. The algorithm consists of two parts: a sequential covering procedure and a rule evolution procedure. Each antibody (candidate solution) corresponds to a classification rule. The classification of new examples (antigens) considers not only the fitness of a fuzzy rule based on the entire training set, but also the affinity between the rule and the new example. This affinity must be greater than a threshold in order for the fuzzy rule to be activated, and it is proposed an adaptive procedure for computing this threshold for each rule. This paper reports results for the proposed algorithm in several data sets. Results are analyzed with respect to both predictive accuracy and rule set simplicity, and are compared with C4.5rules, a very popular data mining algorithm
Generation of three-qubit entangled states using coupled multi-quantum dots
We discuss a mechanism for generating a maximum entangled state (GHZ) in a
coupled quantum dots system, based on analytical techniques. The reliable
generation of such states is crucial for implementing solid-state based quantum
information schemes. The signature originates from a remarkably weak field
pulse or a far off-resonance effects which could be implemented using
technology that is currently being developed. The results are illustrated with
an application to a specific wide-gap semiconductor quantum dots system, like
Zinc Selenide (ZnSe) based quantum dots.Comment: 8 pages, 2 figure
Characterizing top gated bilayer graphene interaction with its environment by Raman spectroscopy
In this work we study the behavior of the optical phonon modes in bilayer
graphene devices by applying top gate voltage, using Raman scattering. We
observe the splitting of the Raman G band as we tune the Fermi level of the
sample, which is explained in terms of mixing of the Raman (Eg) and infrared
(Eu) phonon modes, due to different doping in the two layers. We theoretically
analyze our data in terms of the bilayer graphene phonon self-energy which
includes non-homogeneous charge carrier doping between the graphene layers. We
show that the comparison between the experiment and theoretical model not only
gives information about the total charge concentration in the bilayer graphene
device, but also allows to separately quantify the amount of unintentional
charge coming from the top and the bottom of the system, and therefore to
characterize the interaction of bilayer graphene with its surrounding
environment
Noncommutative Electromagnetism As A Large N Gauge Theory
We map noncommutative (NC) U(1) gauge theory on R^d_C X R^{2n}_{NC} to U(N ->
\infty) Yang-Mills theory on R^d_C, where R^d_C is a d-dimensional commutative
spacetime while R^{2n}_{NC} is a 2n-dimensional NC space. The resulting U(N)
Yang-Mills theory on R^d_C is equivalent to that obtained by the dimensional
reduction of (d+2n)-dimensional U(N) Yang-Mills theory onto R^d_C. We show that
the gauge-Higgs system (A_\mu,\Phi^a) in the U(N -> \infty) Yang-Mills theory
on R^d_C leads to an emergent geometry in the (d+2n)-dimensional spacetime
whose metric was determined by Ward a long time ago. In particular, the
10-dimensional gravity for d=4 and n=3 corresponds to the emergent geometry
arising from the 4-dimensional N=4 vector multiplet in the AdS/CFT duality. We
further elucidate the emergent gravity by showing that the gauge-Higgs system
(A_\mu,\Phi^a) in half-BPS configurations describes self-dual Einstein gravity.Comment: 25 pages; More clarifications, to appear in Eur. Phys. J.
Health-related quality of life in KEYNOTE-010 : a phase II/III study of pembrolizumab versus docetaxel in patients with previously treated advanced, programmed death ligand 1-expressing NSCLC (vol 14, pg 793, 2019)
Interlayer hopping properties of electrons in layered metals
A formalism is proposed to study the electron tunneling between extended
states, based on the spin-boson Hamiltonian previously used in two-level
systems. It is applied to analyze the out--of--plane tunneling in layered
metals considering different models. By studying the effects of in--plane
interactions on the interlayer tunneling of electrons near the Fermi level, we
establish the relation between departure from Fermi liquid behavior driven by
electron correlations inside the layer and the out of plane coherence. Response
functions, directly comparable with experimental data are obtained
Two-band Eliashberg equations and the experimental Tc of the diboride Mg1-xAlxB2
The variation of the superconducting critical temperature Tc as a function of
x in the diboride Mg1-xAlxB2 has been studied in the framework of the two-bands
Eliashberg theory and traditional phonon coupling mechanism. We have solved the
two-bands Eliashberg equations using first-principle calculations or simple
assumptions for the variation of the relevant physical quantities. We have
found that the experimental Tc curve can be explained only if the Coulomb
pseudopotential changes with x by tuning the Fermi level toward the sigma band
edge. In polycrystal samples the x dependence of the sigma and pi-band gap has
been found and is in agreement with experiments.Comment: 6 pages, 7 figure
Functional diversity of chemokines and chemokine receptors in response to viral infection of the central nervous system.
Encounters with neurotropic viruses result in varied outcomes ranging from encephalitis, paralytic poliomyelitis or other serious consequences to relatively benign infection. One of the principal factors that control the outcome of infection is the localized tissue response and subsequent immune response directed against the invading toxic agent. It is the role of the immune system to contain and control the spread of virus infection in the central nervous system (CNS), and paradoxically, this response may also be pathologic. Chemokines are potent proinflammatory molecules whose expression within virally infected tissues is often associated with protection and/or pathology which correlates with migration and accumulation of immune cells. Indeed, studies with a neurotropic murine coronavirus, mouse hepatitis virus (MHV), have provided important insight into the functional roles of chemokines and chemokine receptors in participating in various aspects of host defense as well as disease development within the CNS. This chapter will highlight recent discoveries that have provided insight into the diverse biologic roles of chemokines and their receptors in coordinating immune responses following viral infection of the CNS
Study of dielectron production in C+C collisions at 1 AGeV
The emission of e+e- pairs from C+C collisions at an incident energy of 1 GeV
per nucleon has been investigated. The measured production probabilities,
spanning from the pi0-Dalitz to the rho/omega! invariant-mass region, display a
strong excess above the cocktail of standard hadronic sources. The
bombarding-energy dependence of this excess is found to scale like pion
production, rather than like eta production. The data are in good agreement
with results obtained in the former DLS experiment.Comment: submitted to Physics Letters
- …
