418 research outputs found

    Limits on excited tau leptons masses from leptonic tau decays

    Full text link
    We study the effects induced by excited leptons on the leptonic tau decay at one loop level. Using a general effective lagrangian approach to describe the couplings of the excited leptons, we compute their contributions to the leptonic decays and use the current experimental values of the branching ratios to put limits on the mass of excited states and the substructure scale.Comment: 10 pages, 6 figures, to be published in Phys. Rev.

    Higgs sector and R-parity breaking couplings in models with broken U(1)_B-L gauge symmetry

    Get PDF
    Four different supersymmetric models based on SU(2)_L X U(1)_R X U(1)_B-L and SU(2)_L X SU(2)_R X U(1)_B-L gauge symmetry groups are studied. U(1)_B-L symmetry is broken spontaneously by a vacuum expectation value (VEV) of a sneutrino field. The right-handed gauge bosons may obtain their mass solely by sneutrino VEV. The physical charged lepton and neutrino are mixtures of gauginos, higgsinos and lepton interaction eigenstates. Explicit formulae for masses and mixings in the physical lepton fields are found. The spontaneous symmetry breaking mechanism fixes the trilinear R-parity breaking couplings. Only some special R-parity breaking trilinear couplings are allowed. There is a potentially large trilinear lepton number breaking coupling - which is unique to left-right models - that is proportional to the SU(2)_R gauge coupling g_R. The couplings are parametrized by few mixing angles, making the spontaneous R-parity breaking a natural ``unification framework'' for R-parity breaking couplings in SUSYLR models.Comment: 19 pages, no figures, uses REVTeX. To be published in PR

    Estimating sigma-meson couplings from D \to 3\pi decays

    Full text link
    Using recent experimental evidence from E791 on the sigma meson in D \to 3\pi decays, we study the relevant couplings in D \to \sigma \pi and \sigma \to \pi\ pi within the accepted theoretical framework for non leptonic D decays. We also review the linear sigma model, finding that it gives a description which is consistent with the experimental data.Comment: 6 pages, no figures. Final version accepted for publication as a Brief Report in Physical Review

    The NuTeV Anomaly, Neutrino Mixing, and a Heavy Higgs Boson

    Full text link
    Recent results from the NuTeV experiment at Fermilab and the deviation of the Z invisible width, measured at LEP/SLC, from its Standard Model (SM) prediction suggest the suppression of neutrino-Z couplings. Such suppressions occur naturally in models which mix the neutrinos with heavy gauge singlet states. We postulate a universal suppression of the Z-nu-nu couplings by a factor of (1-epsilon) and perform a fit to the Z-pole and NuTeV observables with epsilon and the oblique correction parameters S and T. Compared to a fit with S and T only, inclusion of epsilon leads to a dramatic improvement in the quality of the fit. The values of S and T preferred by the fit can be obtained within the SM by a simple increase in the Higgs boson mass. However, if the W mass is also included in the fit, a non-zero U parameter becomes necessary which cannot be supplied within the SM. The preferred value of epsilon suggests that the seesaw mechanism may not be the reason why neutrinos are so light.Comment: 19 pages, REVTeX4, 8 postscript figures. Updated references. Typos correcte

    Long-Range Forces of QCD

    Get PDF
    We consider the scattering of two color dipoles (e.g., heavy quarkonium states) at low energy - a QCD analog of Van der Waals interaction. Even though the couplings of the dipoles to the gluon field can be described in perturbation theory, which leads to the potential proportional to (N_c^2-1)/R^{7}, at large distances R the interaction becomes totally non-perturbative. Low-energy QCD theorems are used to evaluate the leading long-distance contribution \sim (N_f^2-1)/(11N_c - 2N_f)^2 R^{-5/2} exp(-2 \mu R) (\mu is the Goldstone boson mass), which is shown to arise from the correlated two-boson exchange. The sum rule which relates the overall strength of the interaction to the energy density of QCD vacuum is derived. Surprisingly, we find that when the size of the dipoles shrinks to zero (the heavy quark limit in the case of quarkonia), the non-perturbative part of the interaction vanishes more slowly than the perturbative part as a consequence of scale anomaly. As an application, we evaluate elastic \pi J/\psi and \pi J/\psi \to \pi \psi' cross sections.Comment: 16pages, 9 eps figures; discussion extended, 2 new references added, to appear in Phys.Rev.

    Nonresonant Semileptonic Heavy Quark Decay

    Get PDF
    In both the large N_c limit and the valence quark model, semileptonic decays are dominated by resonant final states. Using Bjorken's sum rule in an "unquenched" version of the quark model, I demonstrate that in the heavy quark limit nonresonant final states should also be produced at a significant rate. By calculating the individual strengths of a large number of exclusive two-body nonresonant channels, I show that the total rate for such processes is highly fragmented. I also describe some very substantial duality-violating suppression factors which reduce the inclusive nonresonant rate to a few percent of the total semileptonic rate for the finite quark masses of B decay, and comment on the importance of nonresonant decays as testing grounds for very basic ideas on the structure, strength, and significance of the quark-antiquark sea and on quark-hadron duality in QCD.Comment: 51 pages, 2 Postscript figure

    LHC sensitivity to the resonance spectrum of a minimal strongly interacting electroweak symmetry breaking sector

    Get PDF
    We present a unified analysis of the two main production processes of vector boson pairs at the LHC, VV-fusion and qqbar annihilation, in a minimal strongly interacting electroweak symmetry breaking sector. Using a unitarized electroweak chiral Lagrangian formalism and modeling the final V_L V_L strong rescattering effects by a form factor, we describe qqbar annihilation processes in terms of the two chiral parameters that govern elastic V_L V_L scattering. Depending on the values of these two chiral parameters, the unitarized amplitudes may present resonant enhancements in different angular momentum-isospin channels. Scanning this two parameter space, we generate the general resonance spectrum of a minimal strongly interacting electroweak symmetry breaking sector and determine the regions that can be probed at the LHC.Comment: Final version to appear in Phys. Rev. D, including a more detailed exposition and a few more references. Conclusions and results unchanged. 14 pages, 5 figure

    Search for Manifestations of New Physics in Fermion-Pair Production at LEP

    Get PDF
    The measurements of hadron and lepton-pair production cross sections and leptonic forward-backward asymmetries performed with the L3 detector at centre-of-mass energies between 130 GeV and 189 GeV are used to search for new physics phenomena such as: contact interactions, exchange of virtual leptoquarks, scalar quarks and scalar neutrinos, effects of TeV strings in models of quantum gravity with large extra dimensions and non-zero sizes of the fermions. No evidence for these phenomena is found and new limits on their parameters are set

    Flavour Violation in SUSY SU(5) GUT at Large tan beta

    Get PDF
    We study flavour violation in the minimal SUSY SU(5) GUT assuming all the third generation Yukawa couplings to be due to the renormalizable physics above GUT scale. At large tanβ,\tan\beta, as suggested by Yukawa unification in SU(5), sizable flavour violation in the left (right) slepton (down squark) sector is induced due to renormalization effects of down type Yukawa couplings between GUT and Planck scales in addition to the flavour violation in the right slepton sector. The new flavour physics contribution to KKˉ,K-\bar K, BBˉB-\bar B mixing is small but might be of phenomenological interest in the case of bsγ.b\to s\gamma. The sign of the latter contribution is the same as the sign of the dominant chargino contribution, thus making the constraints on SUSY scale coming from bsγb\to s\gamma somewhat more restrictive. The most important feature of the considered scenario is the large rate of lepton flavour violation. Given the present experimental constraints, the μeγ\mu\to e\gamma and μe\mu-e conversion branching ratios are above the sensitivity of the planned experiments unless the SUSY scale is pushed above one TeV.Comment: 22 pages, 7 figure

    Search for composite and exotic fermions at LEP 2

    Get PDF
    A search for unstable heavy fermions with the DELPHI detector at LEP is reported. Sequential and non-canonical leptons, as well as excited leptons and quarks, are considered. The data analysed correspond to an integrated luminosity of about 48 pb^{-1} at an e^+e^- centre-of-mass energy of 183 GeV and about 20 pb^{-1} equally shared between the centre-of-mass energies of 172 GeV and 161 GeV. The search for pair-produced new leptons establishes 95% confidence level mass limits in the region between 70 GeV/c^2 and 90 GeV/c^2, depending on the channel. The search for singly produced excited leptons and quarks establishes upper limits on the ratio of the coupling of the excited fermio
    corecore