In both the large N_c limit and the valence quark model, semileptonic decays
are dominated by resonant final states. Using Bjorken's sum rule in an
"unquenched" version of the quark model, I demonstrate that in the heavy quark
limit nonresonant final states should also be produced at a significant rate.
By calculating the individual strengths of a large number of exclusive two-body
nonresonant channels, I show that the total rate for such processes is highly
fragmented. I also describe some very substantial duality-violating suppression
factors which reduce the inclusive nonresonant rate to a few percent of the
total semileptonic rate for the finite quark masses of B decay, and comment on
the importance of nonresonant decays as testing grounds for very basic ideas on
the structure, strength, and significance of the quark-antiquark sea and on
quark-hadron duality in QCD.Comment: 51 pages, 2 Postscript figure