37 research outputs found

    Toward ab initio density functional theory for nuclei

    Get PDF
    We survey approaches to nonrelativistic density functional theory (DFT) for nuclei using progress toward ab initio DFT for Coulomb systems as a guide. Ab initio DFT starts with a microscopic Hamiltonian and is naturally formulated using orbital-based functionals, which generalize the conventional local-density-plus-gradients form. The orbitals satisfy single-particle equations with multiplicative (local) potentials. The DFT functionals can be developed starting from internucleon forces using wave-function based methods or by Legendre transform via effective actions. We describe known and unresolved issues for applying these formulations to the nuclear many-body problem and discuss how ab initio approaches can help improve empirical energy density functionals.Comment: 69 pages, 16 figures, many revisions based on feedback. To appear in Progress in Particle and Nuclear Physic
    corecore