1,398 research outputs found

    Estimating causal networks in biosphere–atmosphere interaction with the PCMCI approach

    Get PDF
    Local meteorological conditions and biospheric activity are tightly coupled. Understanding these links is an essential prerequisite for predicting the Earth system under climate change conditions. However, many empirical studies on the interaction between the biosphere and the atmosphere are based on correlative approaches that are not able to deduce causal paths, and only very few studies apply causal discovery methods. Here, we use a recently proposed causal graph discovery algorithm, which aims to reconstruct the causal dependency structure underlying a set of time series. We explore the potential of this method to infer temporal dependencies in biosphere-atmosphere interactions. Specifically we address the following questions: How do periodicity and heteroscedasticity influence causal detection rates, i.e. the detection of existing and non-existing links? How consistent are results for noise-contaminated data? Do results exhibit an increased information content that justifies the use of this causal-inference method? We explore the first question using artificial time series with well known dependencies that mimic real-world biosphere-atmosphere interactions. The two remaining questions are addressed jointly in two case studies utilizing observational data. Firstly, we analyse three replicated eddy covariance datasets from a Mediterranean ecosystem at half hourly time resolution allowing us to understand the impact of measurement uncertainties. Secondly, we analyse global NDVI time series (GIMMS 3g) along with gridded climate data to study large-scale climatic drivers of vegetation greenness. Overall, the results confirm the capacity of the causal discovery method to extract time-lagged linear dependencies under realistic settings. The violation of the method's assumptions increases the likelihood to detect false links. Nevertheless, we consistently identify interaction patterns in observational data. Our findings suggest that estimating a directed biosphere-atmosphere network at the ecosystem level can offer novel possibilities to unravel complex multi-directional interactions. Other than classical correlative approaches, our findings are constrained to a few meaningful set of relations which can be powerful insights for the evaluation of terrestrial ecosystem models

    Biosensors for Biomolecular Computing: a Review and Future Perspectives

    Get PDF
    Biomolecular computing is the field of engineering where computation, storage, communication, and coding are obtained by exploiting interactions between biomolecules, especially DNA, RNA, and enzymes. They are a promising solution in a long-term vision, bringing huge parallelism and negligible power consumption. Despite significant efforts in taking advantage of the massive computational power of biomolecules, many issues are still open along the way for considering biomolecular circuits as an alternative or a complement to competing with complementary metal–oxide–semiconductor (CMOS) architectures. According to the Von Neumann architecture, computing systems are composed of a central processing unit, a storage unit, and input and output (I/O). I/O operations are crucial to drive and read the computing core and to interface it to other devices. In emerging technologies, the complexity overhead and the bottleneck of I/O systems are usually limiting factors. While computing units and memories based on biomolecular systems have been successfully presented in literature, the published I/O operations are still based on laboratory equipment without a real development of integrated I/O. Biosensors are suitable devices for transducing biomolecular interactions by converting them into electrical signals. In this work, we explore the latest advancements in biomolecular computing, as well as in biosensors, with focus on technology suitable to provide the required and still missing I/O devices. Therefore, our goal is to picture out the present and future perspectives about DNA, RNA, and enzymatic-based computing according to the progression in its I/O technologies, and to understand how the field of biosensors contributes to the research beyond CMOS

    Miniaturised Wireless Power Transfer Systems for Neurostimulation: A Review

    Get PDF
    In neurostimulation, wireless power transfer is an efficient technology to overcome several limitations affecting medical devices currently used in clinical practice. Several methods were developed over the years for wireless power transfer. In this review article, we report and discuss the three most relevant methodologies for extremely miniaturised implantable neurostimulator: ultrasound coupling, inductive coupling and capacitive coupling. For each powering method, the discussion starts describing the physical working principle. In particular, we focus on the challenges given by the miniaturisation of the implanted integrated circuits and the related ad-hoc solutions for wireless power transfer. Then, we present recent developments and progresses in wireless power transfer for biomedical applications. Last, we compare each technique based on key performance indicators to highlight the most relevant and innovative solutions suitable for neurostimulation, with the gaze turned towards miniaturisation

    Early discontinuation of antibiotics for febrile neutropenia versus continuation until neutropenia resolution

    Get PDF
    Abstract Background: People with cancer with febrile neutropenia are at risk of severe infections and mortality and are thus treated empirically with broad-spectrum antibiotic therapy. However, the recommended duration of antibiotic therapy differs across guidelines. Objectives: To assess the safety of protocol-guided discontinuation of antibiotics regardless of neutrophil count, compared to continuation of antibiotics until neutropenia resolution in people with cancer with fever and neutropenia, in terms of mortality and morbidity. To assess the emergence of resistant bacteria in people with cancer treated with short courses of antibiotic therapy compared with people with cancer treated until resolution of neutropenia. Search methods: We searched the Cochrane Central Register of Controlled Trials (CENTRAL; 2018, Issue 10) in the Cochrane Library, MEDLINE, Embase, and LILACS up to 1 October 2018. We searched the metaRegister of Controlled Trials and the US National Institutes of Health Ongoing Trials Register ClinicalTrials.gov for ongoing and unpublished trials. We reviewed the references of all identified studies for additional trials and handsearched conference proceedings of international infectious diseases and oncology and haematology conferences. Selection criteria: We included randomised controlled trials (RCTs) that compared a short antibiotic therapy course in which discontinuation of antibiotics was guided by protocols regardless of the neutrophil count to a long course in which antibiotics were continued until neutropenia resolution in people with cancer with febrile neutropenia. The primary outcome was 30-day or end of follow-up all-cause mortality. Data collection and analysis: Two review authors independently reviewed all studies for eligibility, extracted data, and assessed risk of bias for all included trials. We calculated risk ratios (RRs) with 95% confidence intervals (CIs) whenever possible. For dichotomous outcomes with zero events in both arms of the trials, we conducted meta-analysis of risk differences (RDs) as well. For continuous outcomes, we extracted means with standard deviations (SD) from the studies and computed mean difference (MD) and 95% CI. If no substantial clinical heterogeneity was found, trials were pooled using the Mantel-Haenszel fixed-effect model. Main results: We included eight RCTs comprising a total of 662 distinct febrile neutropenia episodes. The studies included adults and children, and had variable design and criteria for discontinuation of antibiotics in both study arms. All included studies but two were performed before the year 2000. All studies included people with cancer with fever of unknown origin and excluded people with microbiological documented infections.We found no significant difference between the short-antibiotic therapy arm and the long-antibiotic therapy arm for all-cause mortality (RR 1.38, 95% CI 0.73 to 2.62; RD 0.02, 95% CI -0.02 to 0.05; low-certainty evidence). We downgraded the certainty of the evidence to low due to imprecision and high risk of selection bias. The number of fever days was significantly lower for people in the short-antibiotic treatment arm compared to the long-antibiotic treatment arm (mean difference -0.64, 95% CI -0.96 to -0.32; IÂČ = 30%). In all studies, total antibiotic days were fewer in the intervention arm by three to seven days compared to the long antibiotic therapy. We found no significant differences in the rates of clinical failure (RR 1.23, 95% CI 0.85 to 1.77; very low-certainty evidence). We downgraded the certainty of the evidence for clinical failure due to variable and inconsistent definitions of clinical failure across studies, possible selection bias, and wide confidence intervals. There was no significant difference in the incidence of bacteraemia occurring after randomisation (RR 1.56, 95% CI 0.91 to 2.66; very low-certainty evidence), while the incidence of any documented infections was significantly higher in the short-antibiotic therapy arm (RR 1.67, 95% CI 1.08 to 2.57). There was no significant difference in the incidence of invasive fungal infections (RR 0.86, 95% CI 0.32 to 2.31) and development of antibiotic resistance (RR 1.49, 95% CI 0.62 to 3.61). The data on hospital stay were too sparse to permit any meaningful conclusions. Authors' conclusions: We could make no strong conclusions on the safety of antibiotic discontinuation before neutropenia resolution among people with cancer with febrile neutropenia based on the existing evidence and its low certainty. Results of microbiological outcomes favouring long antibiotic therapy may be misleading due to lower culture positivity rates under antibiotic therapy and not true differences in infection rates. Well-designed, adequately powered RCTs are required that address this issue in the era of rising antibiotic resistance

    High AIDS-related mortality among young women in rural KwaZulu-Natal

    Get PDF
    Objective. To establish mortality rates and cause of death in a rural community in KwaZulu-Natal. This study was conducted as part of a demographic and health survey to assess the impact of HIV infection in this community. Methods. A cross-sectional survey was conducted between February and July 2004. The survey made use of structured questionnaires and verbal autopsies, which yielded detailed information at household level, including the demographic profile of residents, mortality rates and cause of mortality between February 2003 and February 2004.Results. The overall mortality rate in this community was 2.9 deaths per 100 person-years (95% confidence interval (CI): 2.5 - 3.3 per 100 person-years). The highest mortality rate among women occurred in the 30 - 34-year age group, while among men it occurred in the 35 - 39 and > 60-year age groups. Of the 185 verbal autopsies reported, 77 deaths (42%) were attributable to AIDS. The survey revealed that women aged 20 - 24 and men aged 35 - 39 years were bearing a disproportionately large burden of AIDS-related mortality in this community.Conclusion. AIDS-related mortality was found to be disproportionately high in young women in this small rural community, and the majority of deaths resulted from pulmonary tuberculosis. The need to strengthen prevention and treatment efforts in this and similar settings is highlighted

    Euler-Bessel and Euler-Fourier Transforms

    Full text link
    We consider a topological integral transform of Bessel (concentric isospectral sets) type and Fourier (hyperplane isospectral sets) type, using the Euler characteristic as a measure. These transforms convert constructible \zed-valued functions to continuous ℜ\real-valued functions over a vector space. Core contributions include: the definition of the topological Bessel transform; a relationship in terms of the logarithmic blowup of the topological Fourier transform; and a novel Morse index formula for the transforms. We then apply the theory to problems of target reconstruction from enumerative sensor data, including localization and shape discrimination. This last application utilizes an extension of spatially variant apodization (SVA) to mitigate sidelobe phenomena

    Cm-Wavelength Total Flux and Linear Polarization Properties of Radio-Loud BL Lacertae Objects

    Full text link
    Results from a long-term program to quantify the range of behavior of the cm-wavelength total flux and linear polarization variability properties of a sample of 41 radio-loud BL Lac objects using weekly to tri-monthly observations with the University of Michigan 26-m telescope operating at 14.5, 8.0, and 4.8 GHz are presented; these observations are used to identify class-dependent differences between these BL Lacs and QSOs in the Pearson-Readhead sample. The BL Lacs are found to be more highly variable in total flux density than the QSOs, exhibiting changes that are often nearly-simultaneous and of comparable amplitude at 14.5 and 4.8 GHz in contrast to the behavior in the QSOs and supporting the existence of class-dependent differences in opacity within the parsec-scale jet flows. Structure function analyses of the flux observations quantify that a characteristic timescale is identifiable in only 1/3 of the BL Lacs. The time-averaged fractional linear polarizations are only on the order of a few percent and are consistent with the presence of tangled magnetic fields within the emitting regions. In many sources a preferred long-term orientation of the EVPA is present; when compared with the VLBI structural axis, no preferred position angle difference is identified. The polarized flux typically exhibits variability with timescales of months to a few years and shows the signature of a propagating shock during several resolved outbursts. The observations indicate that the source emission is predominately due to evolving source components and support the occurrence of more frequent shock formation in BL Lac parsec-scale flows than in QSO jets. The differences in variability behavior and polarization between BL Lacs and QSOs can be explained by differences in jet stability.Comment: 1 LaTex (aastex) file, 21 postscript figure files, 2 external LaTex table files. To appear in the Astrophysical Journa

    Extraordinary Activity in the BL Lac Object OJ~287

    Get PDF
    We use a continuous wavelet transform to analyze more than two decades of data for the BL~Lac object OJ~287 acquired as part of the UMRAO variability program. We find clear evidence for a persistent modulation of the total flux and polarization with period ∌1.66\sim 1.66 years, and for another signal that dominates activity in the 1980s with period ∌1.12\sim 1.12 years. The relationship between these two variations can be understood in terms of a `shock-in-jet' model, in which the longer time scale periodicity is associated with an otherwise quiescent jet, and the shorter time scale activity is associated with the passage of a shock; the different periodicities of these two components may reflect different internal conditions of the two flow domains, leading to different wave speeds, or different contractions of a single underlying periodicity, due to the different Doppler factors of the two flow components. We suggest that the modulation arises from a wave driven by some asymmetric disturbance close to the central engine. The periodic behavior in polarization exhibits excursions in UU which correspond to a direction ∌45∘\sim 45^{\circ} from the VLBI jet axis. This behavior is not explained by the random walk in the QQ-UU plane which is expected from models in which a pattern of randomly aligned magnetic field elements propagate across the visible portion of the flow, and suggests a small amplitude, cyclic variation in the flow direction in that part of the flow that dominates cm-wavelength emission.Comment: Text: 22 pages, PostScript line figures: 10 pages, GIF color figures: 7. High quality PostScript versions of the GIF images may be obtained from the "Wavelets/First Results" section of http://www.astro.lsa.umich.edu/users/hughes/, or by anon. ftp from file get/hughes/waves.tar.gz at ra.astro.lsa.umich.edu. Submitted to Ap.

    Seasonal adaptation of the thermal‐based two‐source energy balance model for estimating evapotranspiration in a semiarid tree‐grass ecosystem

    No full text
    © 2020 by the authors.The thermal-based two-source energy balance (TSEB) model has accurately simulated energy fluxes in a wide range of landscapes with both remote and proximal sensing data. However, tree-grass ecosystems (TGE) have notably complex heterogeneous vegetation mixtures and dynamic phenological characteristics presenting clear challenges to earth observation and modeling methods. Particularly, the TSEB modeling structure assumes a single vegetation source, making it difficult to represent the multiple vegetation layers present in TGEs (i.e., trees and grasses) which have different phenological and structural characteristics. This study evaluates the implementation of TSEB in a TGE located in central Spain and proposes a new strategy to consider the spatial and temporal complexities observed. This was based on sensitivity analyses (SA) conducted on both primary remote sensing inputs (local SA) and model parameters (global SA). The model was subsequently modified considering phenological dynamics in semi-arid TGEs and assuming a dominant vegetation structure and cover (i.e., either grassland or broadleaved trees) for different seasons (TSEB-2S). The adaptation was compared against the default model and evaluated against eddy covariance (EC) flux measurements and lysimeters over the experimental site. TSEB-2S vastly improved over the default TSEB performance decreasing the mean bias and root-mean-square-deviation (RMSD) of latent heat (LE) from 40 and 82 W m−2 to −4 and 59 W m−2, respectively during 2015. TSEB-2S was further validated for two other EC towers and for different years (2015, 2016 and 2017) obtaining similar error statistics with RMSD of LE ranging between 57 and 63 W m−2. The results presented here demonstrate a relatively simple strategy to improve water and energy flux monitoring over a complex and vulnerable landscape, which are often poorly represented through remote sensing models.The research received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 721995. It was also funded by Ministerio de EconomĂ­a y Competitividad through FLUXPEC CGL2012-34383 and SynerTGE CGL2015-G9095-R (MINECO/FEDER, UE) projects. The research infrastructure at the measurement site in Majadas de TiĂ©tar was partly funded through the Alexander von Humboldt Foundation, ELEMENTAL (CGL 2017-83538-C3-3-R, MINECO-FEDER) and IMAGINA (PROMETEU 2019; Generalitat Valenciana).Peer reviewe
    • 

    corecore