1,188 research outputs found
Mass Dependent Loss of Resolution in Radially Inhomogeneous ExB Ion Traps
ExB ion traps, such as Fourier transform Ion Cyclotron Resonance mass spectrometers (FY:ICR), mass analyze sample ions based on differences in their cyclotron frequencies in a homogeneous magnetic field. The high resolution mass measurements of FT-ICR are based on the relationship between the frequency of the cyclotron orbit and the mass-to-charge (m/q) ratio of an ion. Both the orbit and the frequency/mass relationship result from the radial forces on the ion. Ions trapped by inhomogeneous electric fields experience different magnitudes of the radial electric fields at different positions resulting in a positionally dependent frequency. Such differences in orbital frequencies for ions of a single m/q ratio result in line broadening and loss of resolution
Student Perspectives and Standardized Patient Feedback on an Innovative Simulated Patient Encounter
This retrospective survey analysis sought to explore student perspectives and application of therapeutic use of self during a simulated standardized patient encounter (SSPE) with standardized patient actors portraying serious mental illness (SMI). Researchers collected retrospective data from post SSPE student surveys dating between 2009 and 2019 and standardized patient actor surveys dating between 2017 and 2019. Students’ level of expertise with therapeutic use of self and self-perceptions of the SSPE were analyzed for response categories. Descriptive analysis was conducted on all items. Student survey responses were organized into response categories. Standardized patient actor surveys were analyzed for frequencies of yes/no responses. Post-SSPE student surveys showed that many students found the SSPE to be a great learning experience, allowed them to practice therapeutic use of self, and felt that it reflected a realistic experience working with someone with SMI. Surveys of the standardized patient actors revealed that they observed student use of therapeutic use of self in the vast majority of their interactions. These results lead the researchers to conclude SSPEs are an effective way of teaching necessary occupational therapy skill sets and familiarizing students to populations experiencing SMI prior to Level II fieldwork and clinical practice
Evaluation of Airborne Precision Spacing in a Human-in-the-Loop Experiment
A significant bottleneck in the current air traffic system occurs at the runway. Expanding airports and adding new runways will help solve this problem; however, this comes with significant costs: financially, politically and environmentally. A complementary solution is to safely increase the capacity of current runways. This can be achieved by precisely spacing aircraft at the runway threshold, with a resulting reduction in the spacing bu er required under today s operations. At NASA's Langley Research Center, the Airspace Systems program has been investigating airborne technologies and procedures that will assist the flight crew in achieving precise spacing behind another aircraft. A new spacing clearance allows the pilot to follow speed cues from a new on-board guidance system called Airborne Merging and Spacing for Terminal Arrivals (AMSTAR). AMSTAR receives Automatic Dependent Surveillance-Broadcast (ADS-B) reports from an assigned, leading aircraft and calculates the appropriate speed for the ownship to fly to achieve the desired spacing interval, time- or distance-based, at the runway threshold. Since the goal is overall system capacity, the speed guidance algorithm is designed to provide system-wide benefits and stability to a string of arriving aircraft. An experiment was recently performed at the NASA Langley Air Traffic Operations Laboratory (ATOL) to test the flexibility of Airborne Precision Spacing operations under a variety of operational conditions. These included several types of merge and approach geometries along with the complementary merging and in-trail operations. Twelve airline pilots and four controllers participated in this simulation. Performance and questionnaire data were collected from a total of eighty-four individual arrivals. The pilots were able to achieve precise spacing with a mean error of 0.5 seconds and a standard deviation of 4.7 seconds. No statistically significant di erences in spacing performance were found between in-trail and merging operations or among the three modeled airspaces. Questionnaire data showed general acceptance for both pilots and controllers. These results reinforce previous findings from full-mission simulation and flight evaluation of the in-trail operations. This paper reviews the results of this simulation in detail
A new multi-gas constrained model of trace gas non-homogeneous transport in firn: evaluation and behaviour at eleven polar sites
Insoluble trace gases are trapped in polar ice at the firn-ice transition, at approximately 50 to 100 m below the surface, depending primarily on the site temperature and snow accumulation. Models of trace gas transport in polar firn are used to relate firn air and ice core records of trace gases to their atmospheric history. We propose a new model based on the following contributions. First, the firn air transport model is revised in a poromechanics framework with emphasis on the non-homogeneous properties and the treatment of gravitational settling. We then derive a nonlinear least square multi-gas optimisation scheme to calculate the effective firn diffusivity (automatic diffusivity tuning). The improvements gained by the multi-gas approach are investigated (up to ten gases for a single site are included in the optimisation process). We apply the model to four Arctic (Devon Island, NEEM, North GRIP, Summit) and seven Antarctic (DE08, Berkner Island, Siple Dome, Dronning Maud Land, South Pole, Dome C, Vostok) sites and calculate their respective depth-dependent diffusivity profiles. Among these different sites, a relationship is inferred between the snow accumulation rate and an increasing thickness of the lock-in zone defined from the isotopic composition of molecular nitrogen in firn air (denoted d15N). It is associated with a reduced diffusivity value and an increased ratio of advective to diffusive flux in deep firn, which is particularly important at high accumulation rate sites. This has implications for the understanding of d15N of N2 records in ice cores, in relation with past variations of the snow accumulation rate. As the snow accumulation rate is clearly a primary control on the thickness of the lock-in zone, our new approach that allows for the estimation of the lock-in zone width as a function of accumulation may lead to a better constraint on the age difference between the ice and entrapped gases
Simulation Results for Airborne Precision Spacing along Continuous Descent Arrivals
This paper describes the results of a fast-time simulation experiment and a high-fidelity simulator validation with merging streams of aircraft flying Continuous Descent Arrivals through generic airspace to a runway at Dallas-Ft Worth. Aircraft made small speed adjustments based on an airborne-based spacing algorithm, so as to arrive at the threshold exactly at the assigned time interval behind their Traffic-To-Follow. The 40 aircraft were initialized at different altitudes and speeds on one of four different routes, and then merged at different points and altitudes while flying Continuous Descent Arrivals. This merging and spacing using flight deck equipment and procedures to augment or implement Air Traffic Management directives is called Flight Deck-based Merging and Spacing, an important subset of a larger Airborne Precision Spacing functionality. This research indicates that Flight Deck-based Merging and Spacing initiated while at cruise altitude and well prior to the Terminal Radar Approach Control entry can significantly contribute to the delivery of aircraft at a specified interval to the runway threshold with a high degree of accuracy and at a reduced pilot workload. Furthermore, previously documented work has shown that using a Continuous Descent Arrival instead of a traditional step-down descent can save fuel, reduce noise, and reduce emissions. Research into Flight Deck-based Merging and Spacing is a cooperative effort between government and industry partners
Cross-Over between universality classes in a magnetically disordered metallic wire
In this article we present numerical results of conduction in a disordered
quasi-1D wire in the possible presence of magnetic impurities. Our analysis
leads us to the study of universal properties in different conduction regimes
such as the localized and metallic ones. In particular, we analyse the
cross-over between universality classes occurring when the strength of magnetic
disorder is increased. For this purpose, we use a numerical Landauer approach,
and derive the scattering matrix of the wire from electron's Green's function.Comment: Final version, accepted for publication in New Journ. of Physics, 27
pages, 28 figures. Replaces the earlier shorter preprint arXiv:0910.427
Operational Concept for Flight Crews to Participate in Merging and Spacing of Aircraft
The predicted tripling of air traffic within the next 15 years is expected to cause significant aircraft delays and create a major financial burden for the airline industry unless the capacity of the National Airspace System can be increased. One approach to improve throughput and reduce delay is to develop new ground tools, airborne tools, and procedures to reduce the variance of aircraft delivery to the airport, thereby providing an increase in runway throughput capacity and a reduction in arrival aircraft delay. The first phase of the Merging and Spacing Concept employs a ground based tool used by Air Traffic Control that creates an arrival time to the runway threshold based on the aircraft s current position and speed, then makes minor adjustments to that schedule to accommodate runway throughput constraints such as weather and wake vortex separation criteria. The Merging and Spacing Concept also employs arrival routing that begins at an en route metering fix at altitude and continues to the runway threshold with defined lateral, vertical, and velocity criteria. This allows the desired spacing interval between aircraft at the runway to be translated back in time and space to the metering fix. The tool then calculates a specific speed for each aircraft to fly while enroute to the metering fix based on the adjusted land timing for that aircraft. This speed is data-linked to the crew who fly this speed, causing the aircraft to arrive at the metering fix with the assigned spacing interval behind the previous aircraft in the landing sequence. The second phase of the Merging and Spacing Concept increases the timing precision of the aircraft delivery to the runway threshold by having flight crews using an airborne system make minor speed changes during enroute, descent, and arrival phases of flight. These speed changes are based on broadcast aircraft state data to determine the difference between the actual and assigned time interval between the aircraft pair. The airborne software then calculates a speed adjustment to null that difference over the remaining flight trajectory. Follow-on phases still under development will expand the concept to all types of aircraft, arriving from any direction, merging at different fixes and altitudes, and to any airport. This paper describes the implementation phases of the Merging and Spacing Concept, and provides high-level results of research conducted to date
Interferometry with Photon-Subtracted Thermal Light
We propose and implement a quantum procedure for enhancing the sensitivity
with which one can determine the phase shift experienced by a weak light beam
possessing thermal statistics in passing through an interferometer. Our
procedure entails subtracting exactly one (which can be generalized to m)
photons from the light field exiting an interferometer containing a
phase-shifting element in one of its arms. As a consequence of the process of
photon subtraction, and somewhat surprisingly, the mean photon number and
signal-to-noise ratio of the resulting light field are thereby increased,
leading to enhanced interferometry. This method can be used to increase
measurement sensitivity in a variety of practical applications, including that
of forming the image of an object illuminated only by weak thermal light
Chlorine isotope composition in chlorofluorocarbons CFC-11, CFC-12 and CFC-113 in firn, stratospheric and tropospheric air
The stratospheric degradation of chlorofluorocarbons (CFCs) releases chlorine, which is a major contributor to the destruction of stratospheric ozone (O3). A recent study reported strong chlorine isotope fractionation during the breakdown of the most abundant CFC (CFC-12, CCl2F2, Laube et al., 2010a), similar to effects seen in nitrous oxide (N2O). Using air archives to obtain a long-term record of chlorine isotope ratios in CFCs could help to identify and quantify their sources and sinks. We analyse the three most abundant CFCs and show that CFC-11 (CCl3F) and CFC-113 (CClF2CCl2F) exhibit significant stratospheric chlorine isotope fractionation, in common with CFC-12. The apparent isotope fractionation (εapp) for mid- and high-latitude stratospheric samples are (-2.4±0.5) ‰ and (-2.3±0.4) ‰ for CFC-11, (-12.2±1.6) ‰ and (-6.8±0.8) ‰ for CFC-12 and (-3.5±1.5) ‰ and (-3.3±1.2) ‰ for CFC-113, respectively. Assuming a constant isotope composition of emissions, we calculate the expected trends in the tropospheric isotope signature of these gases based on their stratospheric 37Cl enrichment and stratosphere-troposphere exchange. We compare these projections to the long-term δ(37Cl) trends of all three CFCs, measured on background tropospheric samples from the Cape Grim air archive (Tasmania, 1978 – 2010) and tropospheric firn air samples from Greenland (NEEM site) and Antarctica (Fletcher Promontory site). From 1970 to the present-day, projected trends agree with tropospheric measurements, suggesting that within analytical uncertainties a constant average emission isotope delta is a compatible scenario. The measurement uncertainty is too high to determine whether the average emission isotope delta has been affected by changes in CFC manufacturing processes, or not. Our study increases the suite of trace gases amenable to direct isotope ratio measurements in small air volumes (approximately 200 ml), using a single-detector gas chromatography-mass spectrometry system
Decadal-scale progression of the onset of Dansgaard–Oeschger warming events
During the last glacial period, proxy records throughout the Northern
Hemisphere document a succession of rapid millennial-scale warming events,
called Dansgaard–Oeschger (DO) events. A range of different mechanisms has
been proposed that can produce similar warming in model experiments; however,
the progression and ultimate trigger of the events are still unknown. Because
of their fast nature, the progression is challenging to reconstruct from
paleoclimate data due to the limited temporal resolution achievable in many
archives and cross-dating uncertainties between records. Here, we use new
high-resolution multi-proxy records of sea-salt (derived from sea spray and
sea ice over the North Atlantic) and terrestrial (derived from the central
Asian deserts) aerosol concentrations over the period 10–60 ka from the
North Greenland Ice Core Project (NGRIP) and North Greenland Eemian Ice
Drilling (NEEM) ice cores in conjunction with local precipitation
and temperature proxies from the NGRIP ice core to investigate the
progression of environmental changes at the onset of the warming events at
annual to multi-annual resolution. Our results show on average a small lead
of the changes in both local precipitation and terrestrial dust aerosol
concentrations over the change in sea-salt aerosol concentrations and local
temperature of approximately one decade. This suggests that, connected to the
reinvigoration of the Atlantic meridional overturning circulation and the
warming in the North Atlantic, both synoptic and hemispheric atmospheric
circulation changes at the onset of the DO warming, affecting both the
moisture transport to Greenland and the Asian monsoon systems. Taken at face
value, this suggests that a collapse of the sea-ice cover may not have been
the initial trigger for the DO warming.</p
- …