1,073 research outputs found

    Hydrogen Two-Photon Continuum Emission from the Horseshoe Filament in NGC 1275

    Get PDF
    Far ultraviolet emission has been detected from a knot of Halpha emission in the Horseshoe filament, far out in the NGC 1275 nebula. The flux detected relative to the brightness of the Halpha line in the same spatial region is very close to that expected from Hydrogen two-photon continuum emission in the particle heating model of Ferland et al. (2009) if reddening internal to the filaments is taken into account. We find no need to invoke other sources of far ultraviolet emission such as hot stars or emission lines from CIV in intermediate temperature gas to explain these data.Comment: 9 pages, 8 figures. Accepted for publication in MNRA

    Collisional excitation of [C II], [O I] and CO in Massive Galaxies

    Get PDF
    Many massive galaxies at the centres of relaxed galaxy clusters and groups have vast reservoirs of cool (~10,000 K) and cold (~100 K) gas. In many low redshift brightest group and cluster galaxies this gas is lifted into the hot ISM in filamentary structures, which are long lived and are typically not forming stars. Two important questions are how far do these reservoirs cool and if cold gas is abundant what is the cause of the low star formation efficiency? Heating and excitation of the filaments from collisions and mixing of hot particles in the surrounding X-ray gas describes well the optical and near infra-red line ratios observed in the filaments. In this paper we examine the theoretical properties of dense, cold clouds emitting in the far infra-red and submillimeter through the bright lines of [C II]157 \mu m , [O I]63 \mu m and CO, exposed to these energetic ionising particles. While some emission lines may be optically thick we find this is not sufficient to model the emission line ratios. Models where the filaments are supported by thermal pressure support alone also cannot account for the cold gas line ratios but a very modest additional pressure support, either from turbulence or magnetic fields can fit the observed [O I]/[C II] line ratios by decreasing the density of the gas. This may also help stabilise the filaments against collapse leading to the low rates of star formation. Finally we make predictions for the line ratios expected from cold gas under these conditions and present diagnostic diagrams for comparison with further observations. We provide our code as an Appendix.Comment: 17 pages, submitted to MNRA

    X-ray bright active galactic nuclei in massive galaxy clusters III: New insights into the triggering mechanisms of cluster AGN

    Full text link
    We present the results of a new analysis of the X-ray selected Active Galactic Nuclei (AGN) population in the vicinity of 135 of the most massive galaxy clusters in the redshift range of 0.2 < z < 0.9 observed with Chandra. With a sample of more than 11,000 X-ray point sources, we are able to measure, for the first time, evidence for evolution in the cluster AGN population beyond the expected evolution of field AGN. Our analysis shows that overall number density of cluster AGN scales with the cluster mass as M5001.2\sim M_{500}^{-1.2}. There is no evidence for the overall number density of cluster member X-ray AGN depending on the cluster redshift in a manner different than field AGN, nor there is any evidence that the spatial distribution of cluster AGN (given in units of the cluster overdensity radius r_500) strongly depends on the cluster mass or redshift. The M1.2±0.7M^{-1.2 \pm 0.7} scaling relation we measure is consistent with theoretical predictions of the galaxy merger rate in clusters, which is expected to scale with the cluster velocity dispersion, σ\sigma, as σ3 \sim \sigma^{-3} or M1\sim M^{-1}. This consistency suggests that AGN in clusters may be predominantly triggered by galaxy mergers, a result that is further corroborated by visual inspection of Hubble images for 23 spectroscopically confirmed cluster member AGN in our sample. A merger-driven scenario for the triggering of X-ray AGN is not strongly favored by studies of field galaxies, however, suggesting that different mechanisms may be primarily responsible for the triggering of cluster and field X-ray AGN.Comment: 21 Pages, 8 figures, 5 tables. Submitted to MNRAS. Comments are welcome, and please request Steven Ehlert for higher resolution figure

    Filamentary Star Formation in NGC 1275

    Get PDF
    We examine the star formation in the outer halo of NGC~1275, the central galaxy in the Perseus cluster (Abell 426), using far ultraviolet and optical images obtained with the Hubble Space Telescope. We have identified a population of very young, compact star clusters with typical ages of a few Myr. The star clusters are organised on multiple-kiloparsec scales. Many of these star clusters are associated with "streaks" of young stars, the combination of which has a cometary appearance. We perform photometry on the star clusters and diffuse stellar streaks, and fit their spectral energy distributions to obtain ages and masses. These young stellar populations appear to be normal in terms of their masses, luminosities and cluster formation efficiency; <10% of the young stellar mass is located in star clusters. Our data suggest star formation is associated with the evolution of some of the giant gas filaments in NGC~1275 that become gravitationally unstable on reaching and possibly stalling in the outer galaxy. The stellar streaks then could represent stars moving on ballistic orbits in the potential well of the galaxy cluster. We propose a model where star-forming filaments, switched on ~50~Myr ago and are currently feeding the growth of the NGC~1275 stellar halo at a rate of ~2-3 solar masses per year. This type of process may also build stellar halos and form isolated star clusters in the outskirts of youthful galaxies.Comment: 15 pages, 10 figures, accepted for publication in MNRA

    Resolving the cosmic X-ray background with a next-generation high-energy X-ray observatory

    Get PDF
    The cosmic X-ray background (CXB), which peaks at an energy of ~30 keV, is produced primarily by emission from accreting supermassive black holes (SMBHs). The CXB therefore serves as a constraint on the integrated SMBH growth in the Universe and the accretion physics and obscuration in active galactic nuclei (AGNs). This paper gives an overview of recent progress in understanding the high-energy (>~10 keV) X-ray emission from AGNs and the synthesis of the CXB, with an emphasis on results from NASA's NuSTAR hard X-ray mission. We then discuss remaining challenges and open questions regarding the nature of AGN obscuration and AGN physics. Finally, we highlight the exciting opportunities for a next-generation, high-resolution hard X-ray mission to achieve the long-standing goal of resolving and characterizing the vast majority of the accreting SMBHs that produce the CXB.Comment: Science White paper submitted to Astro2020 Decadal Survey; 5 pages, 3 figures, plus references and cover pag

    Developing an On-Line Interactive Health Psychology Module.

    Get PDF
    On-line teaching material in health psychology was developed which ensured a range of students could access appropriate material for their course and level of study. This material has been developed around the concept of smaller 'content chunks' which can be combined into whole units of learning (topics), and ultimately, a module. On the basis of the underlying philosophy that the medium is part of the message, we considered interactivity to be a key element in engaging the student with the material. Consequently, the key aim of this development was to stimulate and engage students, promoting better involvement with the academic material, and hence better learning. It was hoped that this was achieved through the development of material including linked programmes and supporting material, small Java Scripts and basic email, forms and HTML additions. This material is outlined as are some of the interactive activities introduced, and the preliminary student and tutor experience described

    ALMA observation of the disruption of molecular gas in M87

    Get PDF
    We present the results from Atacama Large Millimeter Array (ALMA) observations centred 40 arcsec (3 kpc in projection) south-east of the nucleus of M87. We report the detection of extended CO (2-1) line emission with a total flux of (5.5 ± 0.6) × 10-18 erg s-1 cm-2 and corresponding molecular gas mass M_{H_2}=(4.7 ± 0.4) × 10^5 M_{⊙}, assuming a Galactic CO to H2 conversion factor. ALMA data indicate a line-of-sight velocity of -129 ± 3 km s-1, in good agreement with measurements based on the [C II] and H α+[N II] lines, and a velocity dispersion of σ = 27 ± 3 km s-1. The CO (2-1) emission originates only outside the radio lobe of the active galactic nucleus (AGN) seen in the 6 cm Very Large Array image, while the filament prolongs further inwards at other wavelengths. The molecular gas in M87 appears to be destroyed or excited by AGN activity, either by direct interaction with the radio plasma, or by the shock driven by the lobe into the X-ray emitting atmosphere. This is an important piece of the puzzle in understanding the impact of the central AGN on the amount of the coldest gas from which star formation can proceed

    Probing the extreme realm of AGN feedback in the massive galaxy cluster, RX J1532.9+3021

    Full text link
    We present a detailed Chandra, XMM-Newton, VLA and HST analysis of one of the strongest cool core clusters known, RX J1532.9+3021 (z=0.3613). Using new, deep 90 ks Chandra observations, we confirm the presence of a western X-ray cavity or bubble, and report on a newly discovered eastern X-ray cavity. The total mechanical power associated with these AGN-driven outflows is (22+/-9)*10^44 erg/s, and is sufficient to offset the cooling, indicating that AGN feedback still provides a viable solution to the cooling flow problem even in the strongest cool core clusters. Based on the distribution of the optical filaments, as well as a jet-like structure seen in the 325 MHz VLA radio map, we suggest that the cluster harbours older outflows along the north to south direction. The jet of the central AGN is therefore either precessing or sloshing-induced motions have caused the outflows to change directions. There are also hints of an X-ray depression to the north aligned with the 325 MHz jet-like structure, which might represent the highest redshift ghost cavity discovered to date. We further find evidence of a cold front (r=65kpc) that coincides with the outermost edge of the western X-ray cavity and the edge of the radio mini-halo. The common location of the cold front with the edge of the radio mini-halo supports the idea that the latter originates from electrons being reaccelerated due to sloshing induced turbulence. Alternatively, its coexistence with the edge of the X-ray cavity may be due to cool gas being dragged out by the outburst. We confirm that the central AGN is highly sub-Eddington and conclude that a >10^10M_Sun or a rapidly spinning black hole is favoured to explain both the radiative-inefficiency of the AGN and the powerful X-ray cavities.Comment: Accepted for publication to ApJ (minor corrections), 16 pages, 16 figures, 5 tables. Full resolution at http://www.stanford.edu/~juliehl/M1532
    corecore