147 research outputs found

    The Structure of Nanoscale Polaron Correlations in La1.2Sr1.8Mn2O7

    Full text link
    A system of strongly-interacting electron-lattice polarons can exhibit charge and orbital order at sufficiently high polaron concentrations. In this study, the structure of short-range polaron correlations in the layered colossal magnetoresistive perovskite manganite, La1.2Sr1.8Mn2O7, has been determined by a crystallographic analysis of broad satellite maxima observed in diffuse X-ray and neutron scattering data. The resulting q=(0.3,0,1) modulation is a longitudinal octahedral-stretch mode, consistent with an incommensurate Jahn-Teller-coupled charge-density-wave fluctuations, that implies an unusual orbital-stripe pattern parallel to the directions.Comment: Reformatted with RevTe

    The ‘mosaic habitat’ concept in human evolution: past and present

    Get PDF
    The habitats preferred by hominins and other species are an important theme in palaeoanthropology, and the ‘mosaic habitat’ (also referred to as habitat heterogeneity) has been a central concept in this regard for the last four decades. Here we explore the development of this concept – loosely defined as a range of different habitat types, such as woodlands, riverine forest and savannah within a limited spatial area– in studies of human evolution in the last sixty years or so. We outline the key developments that took place before and around the time when the term ‘mosaic’ came to wider palaeoanthropological attention. To achieve this we used an analysis of the published literature, a study of illustrations of hominin evolution from 1925 onwards and an email survey of senior researchers in palaeoanthropology and related fields. We found that the term mosaic starts to be applied in palaeoanthropological thinking during the 1970’s due to the work of a number of researchers, including Karl Butzer and Glynn Isaac , with the earliest usage we have found of ‘mosaic’ in specific reference to hominin habitats being by Adriaan Kortlandt (1972). While we observe a steady increase in the numbers of publications reporting mosaic palaeohabitats, in keeping with the growing interest and specialisation in various methods of palaeoenvironmental reconstruction, we also note that there is a lack of critical studies that define this habitat, or examine the temporal and spatial scales associated with it. The general consensus within the field is that the concept now requires more detailed definition and study to evaluate its role in human evolution

    Shannon Information Theory and Molecular Biology

    Get PDF
    The role and the contribution of Shannon Information Theory to the development of Molecular Biology has been the object of stimulating debates during the last thirty years. This seems to be connected with some semantic charms associated with the use of the word \u201cinformation\u201d in the biological context. Furthermore information itself, if viewed in a broader perspective, is far from being completely defined in a fashion that overcomes the technical level at which the classical Information Theory has been conceived. This review aims at building on the acknowledged contribution of Shannon Information Theory to Molecular Biology, so as to discover if it is only a technical tool to analyze DNA and proteinic sequences, or if it can rise, at least in perspective, to a higher role that exerts an influence on the construction of a suitable model for handling the genetic information in Molecular Biology

    Factors affecting body temperatures of toads

    Full text link
    Factors influencing levels and rates of variation of body temperature ( T b ) in montane Bufo boreas boreas and in lowland Bufo boreas halophilus were investigated as an initial step toward understanding the role of natural thermal variation in the physiology and energetics of these ectothermic animals. Body temperatures of boreas can vary 25–30° C over 24-h periods. Such variation is primarily due to both nocturnal and diurnal activity and the physical characteristics of the montane environment. Bufo boreas halophilus are primarily nocturnal except during breeding and are voluntarily active at body temperatures ranging between 10 and 25° C. Despite variation in T b encountered in the field, boreas select a narrow range of T b in a thermal gradient, averaging 23.5 and 26.2° C for fasted individuals maintained under field conditions or acclimated to 20° C, respectively. In a thermal gradient the mean T b of fasted halophilus acclimated to 20° C is 23.9° C. Skin color of boreas varies in the field from very dark to light. The dark skins absorb approximately 4% more radiation than the light ones. Light colored boreas should absorb approximately 5% more radiation than similarly colored halophilus . Evaporative water losses increase directly with skin temperatures and vapor pressure deficit in both subspecies. Larger individuals heat and cool more slowly than smaller ones. Calculation of an enery budget for boreal toads suggests that they could sit in direct sunlight for long periods without fatally overheating, providing the skin was continually moist.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47722/1/442_2004_Article_BF00344732.pd

    Characteristics of the nuclear (18S, 5.8S, 28S and 5S) and mitochondrial (12S and 16S) rRNA genes of Apis mellifera (Insecta: Hymenoptera): structure, organization, and retrotransposable elements

    Get PDF
    As an accompanying manuscript to the release of the honey bee genome, we report the entire sequence of the nuclear (18S, 5.8S, 28S and 5S) and mitochondrial (12S and 16S) ribosomal RNA (rRNA)-encoding gene sequences (rDNA) and related internally and externally transcribed spacer regions of Apis mellifera (Insecta: Hymenoptera: Apocrita). Additionally, we predict secondary structures for the mature rRNA molecules based on comparative sequence analyses with other arthropod taxa and reference to recently published crystal structures of the ribosome. In general, the structures of honey bee rRNAs are in agreement with previously predicted rRNA models from other arthropods in core regions of the rRNA, with little additional expansion in non-conserved regions. Our multiple sequence alignments are made available on several public databases and provide a preliminary establishment of a global structural model of all rRNAs from the insects. Additionally, we provide conserved stretches of sequences flanking the rDNA cistrons that comprise the externally transcribed spacer regions (ETS) and part of the intergenic spacer region (IGS), including several repetitive motifs. Finally, we report the occurrence of retrotransposition in the nuclear large subunit rDNA, as R2 elements are present in the usual insertion points found in other arthropods. Interestingly, functional R1 elements usually present in the genomes of insects were not detected in the honey bee rRNA genes. The reverse transcriptase products of the R2 elements are deduced from their putative open reading frames and structurally aligned with those from another hymenopteran insect, the jewel wasp Nasonia (Pteromalidae). Stretches of conserved amino acids shared between Apis and Nasonia are illustrated and serve as potential sites for primer design, as target amplicons within these R2 elements may serve as novel phylogenetic markers for Hymenoptera. Given the impending completion of the sequencing of the Nasonia genome, we expect our report eventually to shed light on the evolution of the hymenopteran genome within higher insects, particularly regarding the relative maintenance of conserved rDNA genes, related variable spacer regions and retrotransposable elements

    Information and digital literacies; a review of concepts

    Get PDF
    A detailed literature reviewing, analysing the multiple and confusing concepts around the ideas of information literacy and digital literacy at the start of the millennium. The article was well-received, and is my most highly-cited work, with over 1100 citations
    • 

    corecore