1,163 research outputs found

    Daytime turbulent exchange between the Amazon forest and the atmosphere

    Get PDF
    Detailed observations of turbulence just above and below the crown of the Amazon rain forest during the wet season are presented. The forest canopy is shown to remove high frequency turbulent fluctuations while passing lower frequencies. Filter characteristics of turbulent transfer into the Amazon rain forest canopy are quantified. Simple empirical relations that relate observed turbulent heat fluxes to horizontal wind variance are presented. Changes in the amount of turbulent coupling between the forest and the boundary layer associated with deep convective clouds are presented both as statistical averages and as a series of case studies. These convective processes during the rainy season are shown to alter the diurnal course of turbulent fluxes. In wake of giant coastal systems, no significant heat or moisture fluxes occur for up to a day after the event. Radar data is used to demonstrate that even small raining clouds are capable of evacuating the canopy of substances normally trapped by persistent static stability near the forest floor. Recovery from these events can take more than an hour, even during mid-day. In spite of the ubiquitous presence of clouds and frequent rain during this season, the average horizontal wind speed spectrum is well described by dry CBL similarity hypotheses originally found to apply in flat terrain

    Dark Interactions and Cosmological Fine-Tuning

    Full text link
    Cosmological models involving an interaction between dark matter and dark energy have been proposed in order to solve the so-called coincidence problem. Different forms of coupling have been studied, but there have been claims that observational data seem to narrow (some of) them down to something annoyingly close to the Λ\LambdaCDM model, thus greatly reducing their ability to deal with the problem in the first place. The smallness problem of the initial energy density of dark energy has also been a target of cosmological models in recent years. Making use of a moderately general coupling scheme, this paper aims to unite these different approaches and shed some light as to whether this class of models has any true perspective in suppressing the aforementioned issues that plague our current understanding of the universe, in a quantitative and unambiguous way.Comment: 13 pages, 9 figures, accepted for publication in JCAP. Minor corrections, one figure replaced, references adde

    Dark Coupling and Gauge Invariance

    Get PDF
    We study a coupled dark energy-dark matter model in which the energy-momentum exchange is proportional to the Hubble expansion rate. The inclusion of its perturbation is required by gauge invariance. We derive the linear perturbation equations for the gauge invariant energy density contrast and velocity of the coupled fluids, and we determine the initial conditions. The latter turn out to be adiabatic for dark energy, when assuming adiabatic initial conditions for all the standard fluids. We perform a full Monte Carlo Markov Chain likelihood analysis of the model, using WMAP 7-year data.Comment: 16 pages, 2 figures, version accepted for publication in JCA

    Agronomic Characteristics, Chemical Composition and In vitro Gas Production of Sugarcane Cultivars (Saccharum spp.) for Feeding Ruminants.

    Get PDF
    solids content (BRIX), NDF/BRIX ratio and tons of sucrose/ha, total digestible nutrients, digestible energy, metabolizable energy, net energy and in vitro digestibility of organic matter, crude protein, neutral detergent fiber (NDF) and acid detergent, of digestion and In vitro gas production of nonfibrous carbohydrates, latency time, digestion rate and gas production of fibrous carbohydrates, and in vitro digestibility of organic matter. There was a significant difference between the cultivars regarding the neutral detergent fiber content, in vitro digestibility of organic matter, total digestible nutrients, digestible energy, net energy, degradation rates of fibrous and non-fibrous carbohydrates and latency period. There was a negative correlation between stem percentage and NDF/BRIX and positive correlation between in vitro digestibility of organic matter and total digestible nutrients. The results were submitted to analysis of variance and mean test by Scott-Knott and Pearson's correlation analysis. The statistical program used was SAEG 2000. The RB835486 variety was superior to the other cultivars, as it presented 93.28% of stem, 57.5% of in vitro digestibility of organic matter, NDF / BRIX ratio of 2.68, 43.78% NDF, latency period 2.86h and fibrous carbohydrate degradation rate of 2.26% per hour. Therefore, this cultivar was better indicated for animal feeding between May and July in the State of Mato Grosso, Brazil

    VSI: the VLTI spectro-imager

    Full text link
    The VLTI Spectro Imager (VSI) was proposed as a second-generation instrument of the Very Large Telescope Interferometer providing the ESO community with spectrally-resolved, near-infrared images at angular resolutions down to 1.1 milliarcsecond and spectral resolutions up to R=12000. Targets as faint as K=13 will be imaged without requiring a brighter nearby reference object. The unique combination of high-dynamic-range imaging at high angular resolution and high spectral resolution enables a scientific program which serves a broad user community and at the same time provides the opportunity for breakthroughs in many areas of astrophysic including: probing the initial conditions for planet formation in the AU-scale environments of young stars; imaging convective cells and other phenomena on the surfaces of stars; mapping the chemical and physical environments of evolved stars, stellar remnants, and stellar winds; and disentangling the central regions of active galactic nuclei and supermassive black holes. VSI will provide these new capabilities using technologies which have been extensively tested in the past and VSI requires little in terms of new infrastructure on the VLTI. At the same time, VSI will be able to make maximum use of new infrastructure as it becomes available; for example, by combining 4, 6 and eventually 8 telescopes, enabling rapid imaging through the measurement of up to 28 visibilities in every wavelength channel within a few minutes. The current studies are focused on a 4-telescope version with an upgrade to a 6-telescope one. The instrument contains its own fringe tracker and tip-tilt control in order to reduce the constraints on the VLTI infrastructure and maximize the scientific return.Comment: 12 pages, to be published in Proc. SPIE conference 7013 "Optical and Infrared Interferometry", Schoeller, Danchi, and Delplancke, F. (eds.). See also http://vsi.obs.ujf-grenoble.f

    Comparative study of the synthesis and characterization of reduced graphene oxide (RGO) using an eco friendly reducing agent

    Get PDF
    In this work, the reducing action of four reducing agents—ascorbic acid, inorganic salt, sodium hydrosulfte and polysaccharide—was investigated. Some reducing agents, in addition to being environmentally friendly, are good substitutes for dangerous chemicals used industrially. Graphene oxide (GO) was synthesized by the modifed Hummers method and was reduced with ascorbic acid (RGO-AA), inorganic salt (RGO-SI), sodium hydrosulfte (RGO-HS) and polysaccharide (RGO-PS). The microstructural, morphological, optical, electrochemical and thermal properties of GO, RGO-AA, RGOSI, RGO-HS and RGO-PS were characterized by x-ray difraction (XRD), Raman spectroscopy, Fourier transform infrared spectroscopy/attenuated total refectance (FTIR-ATR), x-ray photoelectron spectroscopy (XPS), high-resolution transmission electron microscopy (HRTEM)/energy-dispersive x-ray spectroscopy (EDS), feld-emission scanning electron microscopy (FEG-SEM), UV–Vis, zeta potential, thermogravimetric analysis (TGA) and diferential scanning calorimetry (DSC). The conclusive results showed that the four agents demonstrated reducing capability. It was observed that the reducing agent derived from inverted sugar (polysaccharide) was the most efcient because it presented a reduction in GO with fewer microstructural defects, a lower number of sheets, and electrochemical and thermal properties superior to the properties obtained from conventional reducing agents. Therefore, with these impressive results obtained with polysaccharide, it was concluded that an efective GO reducing agent was obtained using this green and ecological product, resulting in a reduced graphene oxide (RGO) with few sheets and fewer defects and, consequently, with greater supercapacitor application potential.CNPq -Conselho Nacional de Desenvolvimento Científico e Tecnológico(45034/2020-3

    Hydrodynamics of galactic dark matter

    Get PDF
    We consider simple hydrodynamical models of galactic dark matter in which the galactic halo is a self-gravitating and self-interacting gas that dominates the dynamics of the galaxy. Modeling this halo as a sphericaly symmetric and static perfect fluid satisfying the field equations of General Relativity, visible barionic matter can be treated as ``test particles'' in the geometry of this field. We show that the assumption of an empirical ``universal rotation curve'' that fits a wide variety of galaxies is compatible, under suitable approximations, with state variables characteristic of a non-relativistic Maxwell-Boltzmann gas that becomes an isothermal sphere in the Newtonian limit. Consistency criteria lead to a minimal bound for particle masses in the range 30eVm60eV30 \hbox{eV} \leq m \leq 60 \hbox{eV} and to a constraint between the central temperature and the particles mass. The allowed mass range includes popular supersymmetric particle candidates, such as the neutralino, axino and gravitino, as well as lighter particles (mm\approx keV) proposed by numerical N-body simulations associated with self-interactive CDM and WDM structure formation theories.Comment: LaTeX article style, 16 pages including three figures. Final version to appear in Classical and Quantum Gravit

    Influence of wiring cost on the large-scale architecture of human cortical connectivity

    Get PDF
    In the past two decades some fundamental properties of cortical connectivity have been discovered: small-world structure, pronounced hierarchical and modular organisation, and strong core and rich-club structures. A common assumption when interpreting results of this kind is that the observed structural properties are present to enable the brain's function. However, the brain is also embedded into the limited space of the skull and its wiring has associated developmental and metabolic costs. These basic physical and economic aspects place separate, often conflicting, constraints on the brain's connectivity, which must be characterized in order to understand the true relationship between brain structure and function. To address this challenge, here we ask which, and to what extent, aspects of the structural organisation of the brain are conserved if we preserve specific spatial and topological properties of the brain but otherwise randomise its connectivity. We perform a comparative analysis of a connectivity map of the cortical connectome both on high- and low-resolutions utilising three different types of surrogate networks: spatially unconstrained (‘random’), connection length preserving (‘spatial’), and connection length optimised (‘reduced’) surrogates. We find that unconstrained randomisation markedly diminishes all investigated architectural properties of cortical connectivity. By contrast, spatial and reduced surrogates largely preserve most properties and, interestingly, often more so in the reduced surrogates. Specifically, our results suggest that the cortical network is less tightly integrated than its spatial constraints would allow, but more strongly segregated than its spatial constraints would necessitate. We additionally find that hierarchical organisation and rich-club structure of the cortical connectivity are largely preserved in spatial and reduced surrogates and hence may be partially attributable to cortical wiring constraints. In contrast, the high modularity and strong s-core of the high-resolution cortical network are significantly stronger than in the surrogates, underlining their potential functional relevance in the brain
    corecore