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Abstract:We study a coupled dark energy–dark matter model in which the energy-

momentum exchange is proportional to the Hubble expansion rate. The inclusion of

its perturbation is required by gauge invariance. We derive the linear perturbation

equations for the gauge invariant energy density contrast and velocity of the coupled

fluids, and we determine the initial conditions. The latter turn out to be adiabatic for

dark energy, when assuming adiabatic initial conditions for all the standard fluids.

We perform a full Monte Carlo Markov Chain likelihood analysis of the model, using

WMAP 7-year data.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digital.CSIC

https://core.ac.uk/display/36043357?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/1005.0295v2


1. Introduction

The true substance of dark energy and dark matter is unknown although it should

account for about 95% of the matter–energy content of our universe today [1]. While

the couplings of dark fluids to photons and normal matter are severely constrained [2],

nothing prevents dark matter–dark energy interactions [3–21]. At the level of the

background evolution equations, it is customary to parametrize the coupling between

the two dark sectors [22] as:

˙̄ρdm + 3Hρ̄dm = aQdm , (1.1)

˙̄ρde + 3Hρ̄de(1 + w) = aQde , (1.2)

where ρ̄dm, ρ̄de denote the dark matter and dark energy energy densities, respectively,

and Qdm = −Qde encodes the coupling between those two dark sectors and drives

the energy exchange between them. The dot indicates derivative with respect to the

conformal time dτ = dt/a, with H = ȧ/a ≡ aH denoting the background expansion

rate, while w ≡ wde = p̄de/ρ̄de stands for the background dark energy equation of

state and pressureless dark matter is assumed: wdm = p̄dm/ρ̄dm = 0. From now on,

barred quantities are to be considered as the background quantities.

The initial conditions for the several components populating the early universe

have been explored to a large extent. They were first analyzed for all cosmic flu-

ids but dark energy (see e.g. Ref. [23] and references therein), with the result that

adiabatic initial conditions were one possibility. It was also noticed that the choice

of gauge could be a delicate issue: a safe alternative proposed was to use a gauge

invariant formalism [22,24–26]. The initial conditions for the case of dynamical dark

energy as an uncoupled quintessence field have been also derived [27–33], including

a gauge invariant treatment [33]: they turned out to be adiabatic if those for the

traditional fluids were adiabatic. Furthermore, the formalism in Ref. [33] has been

recently applied to the case of a coupled dark energy-dark matter systems which

mimic uncoupled models at early times, both at the background and perturbation

levels [18] for the viable parameter space: as expected, adiabatic initial conditions

for dark energy naturally resulted then. Here we consider a different class of dark

couplings, not negligible at early times. It is also illustrated that the gauge invariant

formalism is particularly illuminating for the determination of the correct perturba-

tion equations, for a general coupled theory.

The structure of the paper is as follows. In Section 2, the notation is set and

the gauge invariant equations -at linear order in perturbation theory- for a coupled

fluid are derived. In particular, we study in Section 2.2 the case of a (covariant)

dark matter–dark energy interaction proportional to the Hubble rate. In Section 3,

following the method proposed in Ref. [33], we derive the corresponding initial con-

ditions for dark energy. Then in Section 4, we constrain the type of coupled models

analyzed, using several data sets. Section 5 contains the conclusions.
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2. Gauge invariant perturbation equations

Following Ref. [22], the FRW metric, up to first order in perturbation theory, can be

written as:

gµνdx
µdxν = a2

[
−(1 + 2A)dτ 2 − Bidτdx

i + (γij + 2Hij)dx
idxj

]
, (2.1)

where γij is the 3D flat metric with positive signature. The perturbations A, Bi and

Hij are functions of time and space and are in general gauge-dependent, i.e. not

invariant under an infinitesimal coordinate transformation:

(x0, xi) → (x̂0, x̂i) = (x0 − T, xi − Li) . (2.2)

Particularizing to the case of scalar metric perturbations, two gauge invariant quan-

tities1 can be defined [24], the most popular being the so-called Bardeen potentials

ΦB and ΨB.

In describing the evolution of a given fluid “a”, other gauge dependent quantities

are introduced, such as the perturbed 4–velocity and the energy–momentum tensor,

which can be expressed by:

uµ
a =

1

a
(1−A, via) , (2.3)

T µν
a = ρ̄a(1 + δa)u

µ
au

ν
a + τµνa , (2.4)

where via is the peculiar velocity perturbation of the fluid, δa the density perturbation

and τµνa the stress tensor, whose components in first order perturbation theory read

τa
0
0 = 0 , τa

i
0 = p̄a v

i
a , τa

i
j = p̄a

[(
1 + πL

a

)
γi
j + (πT

a )
i
j

]
. (2.5)

In what follows, we deal with the Fourier transformations of the scalar part of the

metric and fluid perturbations. See Appendix A for details. In the equations above,

πL
a and πT

a denote the isotropic and anisotropic scalar pressure perturbations, respec-

tively, while va is the scalar part of the peculiar velocity. Associated gauge invariant

quantities can be defined, paralleling the two gauge invariant variables for scalar

metric perturbations. Following the notation in Ref. [33], a possible gauge invariant

formulation for δa, va and the stress–tensor components πL
a and πT

a is:

∆a = δa −
˙̄ρa
ρ̄a

R

H
, Va = va −

ḢT

k
(2.6)

Γa = πL
a −

c2Aa

wa

δa , Πa = πT
a . (2.7)

The coefficient c2Aa entering in the entropy perturbation Γa is the adiabatic sound

speed of the fluid c2Aa = ˙̄pa/ ˙̄ρa and wa is the equation of state of the fluid.

We focus next on the derivation of the gauge invariant equations for the matter

density contrast ∆a and the fluid velocity Va, for a generic coupled fluid.
1The transformation properties of the metric perturbations defined in Eq. (2.1) and the explicit

definition of the Bardeen potentials is reminded in Appendix A.
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2.1 Coupled fluids in general

Consider the full (background plus perturbations) continuity equation for fluid “a”:

∇µT
µν
a = Qν

a ,
∑

a

Qν
a = 0 , (2.8)

where T µν
a denotes the corresponding energy-momentum tensor and the vector Qν

a

governs the energy-momentum transfer. The constraint on the right accounts for

total energy–momentum conservation. Following Ref. [22], Qν
a can be written as:

Qµ
a = Qau

µ
a + jµa , with jµau

a
µ = 0 , (2.9)

Qa = Qa

(
1 +

δQa

Qa

)
≡ Qa (1 + εa) , (2.10)

where jµa and εa are perturbation parameters. In particular, the background contri-

butions reduce to the coupled dark energy-dark matter case in Eqs. (1.1) and (1.2),

for Qν
de = −Qν

dm. Defining for simplicity jia = ρ̄af
i
a/a, the total coupling reads

Qµ
a =

1

a

(
Qa [1− (A− εa)] , Qav

i
a + ρ̄af

i
a

)
. (2.11)

Let’s denote by fa the Fourier transform of the scalar part of f i
a. One can show that

fa is invariant under gauge transformations, while εa transforms as

ε̂a = εa −
Q̇a

Qa

T , (2.12)

where the “hat” denotes gauge transformed quantities. This suggest a possible choice

of gauge invariant variables for the coupling perturbation parameters, given by

Ea = εa −
Q̇a

Qa

R

H
, (2.13)

Fa = fa . (2.14)

The gauge invariant choice in Eq. (2.13) is analogous to that for ∆a in Eq. (2.6).

With the help of these variables, the scalar perturbation equations for the matter

density contrast ∆a and the peculiar velocity Va, for a generic coupled fluid, read:

∆̇a = −3H
[(
c2Aa − wa

)
∆a + waΓa

]
− k(1 + wa)Va + 3Hq̄a [A+ Ea −∆a] , (2.15)

V̇a = −H
(
1− 3c2Aa

)
Va +

k

1 + wa

[
c2Aa∆a + wa

(
Γa −

2

3
Πa

)]
+ k

(
ΨB − 3c2AaΦB

)

−3Hq̄a
c2Aa

1 + wa

(
Va − k

ΦB

H

)
+

aFa

1 + wa

, (2.16)
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where A is a metric gauge invariant quantity [22], whose expression is given in

Eq. (A.19). The quantity q̄a accounts for the energy transfer Qa in Eqs. (2.15)

and (2.16), rescaled as follows

q̄a ≡
aQa

3Hρ̄a
. (2.17)

For vanishing q̄a and Fa, Eqs. (2.15) and (2.16) reduce to those in Ref. [33].

2.2 Coupling proportional to H

Coupled models with a dark matter-dark energy coupling proportional to the Hubble

expansion rate have been studied at the level of linear perturbations in several recent

works, see for example Refs. [14–17, 34]. Perturbations in the expansion rate were

neglected, though. To analyze the issue, the results of the previous section will be

particularized to the following coupling:

Qν
dm = ξHρde u

ν
dm = −Qν

de . (2.18)

Here Qν
dm is chosen parallel to the dark matter four velocity uν

dm to avoid momentum

transfer in the dark matter rest frame [14]. The evolution equation for the dark

matter velocity remains then equal to that of baryons, avoiding the violation of the

weak equivalence principle. Moreover, the authors of Ref. [14] pointed out that such

a coupled models could suffer from non-adiabatic instabilities if the coupling Qdm is

chosen proportional to the dark matter energy density. In Ref. [15–17], it was shown

though that such instabilities could be avoided in a minimal way choosing a coupling

Qdm proportional to the dark energy density2.

It is important to notice that, in order to deal with a consistent model, H in

Eq. (2.18) must denote the total expansion rate (background plus perturbations),

H = H+ δH , while in all previous studies only the background quantity was consid-

ered. The inclusion of δH is mandatory to preserve gauge invariance, as we proceed

to illustrate. For the model in Eq. (2.18) one obtains:

Qdm = ξHρ̄de , (2.19)

εdm =
δH

H
+

δρde
ρ̄de

≡ K + δde . (2.20)

The K term (see Eq. (A.9)), represents the expansion rate perturbation, overlooked

in all the references mentioned above. Indeed, K depends on the time slicing, so that

the coupling perturbation εa gauge transforms as:

ε̂a − εa ≡
Q̇a

Qa

T =
Ḣ

H
T +

ρ̇de
ρde

T =
(
K̂ − K

)
+
(
δ̂de − δde

)
. (2.21)

2Would an interaction proportional to the dark matter density be studied instead, it would be

necessary to consider a time dependent dark energy equation of state, in order to avoid early time

instabilities, thus introducing at least one extra free parameter, see Ref. [18].
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To our knowledge this result was not explicitly discussed elsewhere. We will see

in Sec. 4 that the extra contribution resulting from δH has little quantitative im-

pact on the physical constraints obtained from data, while being essential for gauge

invariance.

Before proceeding further let us comment on the covariance of the coupling of

Eq. (2.18). First of all, the dark energy density can be rewritten as ρde = T µν
de u

de
µ ude

ν .

Moreover, we can express the Hubble expansion rate in terms of the covariant deriva-

tive of the four velocity defined in Eq. (2.3). Indeed, it is straightforward to verify

that the background quantity associated to uµ
a;µ is directly proportional to the ex-

pansion rate H . Following [22] one has:

Θa = uµ
a;µ = 3H(1 +Ka) . (2.22)

Under gauge transformations, the perturbation Ka (associated to the a–fluid) trans-

forms like:

K̂a −Ka =
Ḣ

H
T (2.23)

which is exactly what is needed to preserve the gauge invariance of the coupled model

under study, see Eq. (2.21). In the following, we will use for definiteness the total

matter expansion rate ΘT = uµ
T ;µ = 3H(1 + K), denoting with K the perturbation

associated to the total fluid. Finally the coupling of Eq. (2.18) can be written in a

covariant way as:

Qν
dm = ξ

ΘT

3
T αβ
de u

de
α ude

β uν
dm = −Qν

de . (2.24)

We can now particularize Eqs. (2.15) and (2.16) to our coupling. Expressing K

in terms of gauge invariant quantities one obtains:

Ea = ∆de +

(
x2

3
−

3

2
(1 + wT )

)
ṼT + 2ΦB (2.25)

where wT and VT is the equation of state and velocity of the total fluid. The density
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and velocity perturbation equations then read:

∆̇dm

H
= −x2 Ṽdm + ξ

ρ̄de
ρ̄dm

[
(∆de −∆dm) +

x2

3
ṼT

]
, (2.26)

˙̃
V dm

H
= −

(
1−

Ḣ

H2

)
Ṽdm −

(
ΦB + ΩνΠ̃ν

)
, (2.27)

∆̇de

H
= −3(c2S − w)∆de − (1 + w) x2 Ṽde + 9 (1 + w)

(
c2S − c2A

) (
ΦB − Ṽde

)

−ξ

[
x2

3
ṼT − 3

(
c2S − c2A

) (
ΦB − Ṽde

)]
, (2.28)

˙̃
V de

H
= −

(
1−

Ḣ

H2
− 3c2S

)
Ṽde −

(
1 + 3c2S

)
ΦB − ΩνΠ̃ν +

c2S
1 + w

∆de +

+
ξ

1 + w

[(
1 + c2S

)
Ṽde − Ṽdm − c2SΦB

]
, (2.29)

the rescaled quantities Ṽ = V/x and Π̃ = Π/x2 were used, with x = k/H. In deriving

these equations, the dark energy entropy perturbation Γde has been rewritten in terms

of ∆de, Vde and ΦB , see Eq. (A.26). c2A and c2S are the dark energy adiabatic sound

speed and the rest frame sound speed, respectively. In the following we work in the

framework of constant w, c2A = w and c2S = 1.

3. Initial conditions

In Ref. [33], whose gauge invariant formalism we follow, the solution of the system

of differential equations for the perturbations is reduced to that of a simple eigenval-

ues/eigenvectors problem:

U ′ ≡
dU

d lnx
= A(x)U . (3.1)

Here A(x) encodes the evolution equations for all the universe components, and

UT ≡ {∆dm, Ṽdm,∆γ, Ṽγ,∆b,∆ν , Ṽν , Π̃ν ,∆de, Ṽde} (3.2)

is an array of gauge invariant perturbations, where the subscripts γ, b and ν stand for

photons, baryons and neutrinos, respectively. No anisotropic stress for dark energy

and negligible anisotropic stress for photons (due to large Thompson damping) are

assumed.

The evolution equations for baryons, photons, and neutrinos are unaltered by

the presence of the dark coupling and we obviate them below. In contrast, the

dark matter and dark energy perturbation equations for the case under study are

significantly modified. The exact form of the correspondent A(x) matrix can be

easily derived from Eqs. (2.26)–(2.29).
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To obtain the initial conditions for cosmological perturbations, it is necessary to

study the evolution of the several cosmic components at a very early stage, when

the universe was radiation dominated and H = 1/τ . One is interested in the time

dependence of all perturbations on super–horizon scales, i.e for x = kτ ≪ 1.

3.1 The A0 matrix

At early times x ≪ 1, the A(x) matrix can be approached by a constant matrix

A0, if no divergence appears when taking the limx→0A(x). The assumption that the

universe is radiation dominated at early times implies wT = 1/3, ρ̄T = ρ̄rad and

Ων = ρ̄ν/ρ̄rad = Rν , Ωγ = 1−Rν and
Ωde

Ωdm

=
ρ̄de
ρ̄dm

∝ x−(3w+ξ) . (3.3)

w < −1/3 is assumed as well, in order to obtain cosmic acceleration, which implies

that (3w + ξ) can be always taken negative for ξ < 0.
Using Eqs. (2.26)–(2.29) and taking the x → 0 limit, the following entries in the

A0 matrix associated to ∆de and Ṽde result:




0 0
Rγ

4
(α+ βξ) Rγ(α + βξ) 0 Rν

4
(α+ βξ) Rν(α+ βξ) 0 −β −(α+ βξ)

0 −ξr −Rγ (1 + ξr/4) −4Rγ (1 + ξr/4) 0 −Rν (1 + ξr/4) −4Rν (1 + ξr/4) −Rν
1

1+w
1 + 2ξr




where α = 9(1 − w2), β = 3(1 − w), ξr = ξ/(1 + w) and Rγ = 1 − Rν . The other

lines in the A0 matrix remain equal to the uncoupled case ones. Indeed the extra

term in the ∆dm equation proportional to ξρ̄de/ρ̄dm can be safely neglected in the

x → 0 approximation. We thus recover the standard non interacting dark matter

perturbation equation in the early universe. Notice that this was also the case of the

viable coupled model discussed in Ref. [18].

3.2 Adiabatic initial conditions

Let Ui be an eigenvector of A0 with eigenvalue λi. The solution to the system in

Eq. (3.1) can then be expressed as a linear combination of xλiUi terms. Those cor-

responding to the largest eigenvalues will dominate the time evolution. We checked

that for the model under study, Eq. (2.24), the dominant modes are associated to

λi = 0 values and they suffice to specify the initial conditions. The subdominant

modes decay in time as they correspond to negative real eigenvalues3. The dominant

eigenvalue of the evolution matrix, λi = 0, is fourfold degenerate (as was the case for

a universe without dynamical dark energy) and the corresponding four eigenvectors

serve as a convenient basis to specify the initial conditions.

3Also, see Ref. [33] for the case of quintessence and Ref. [18] for coupled dark sectors with a

different coupling.
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Let us assume adiabatic initial conditions for all species but dark energy, as

strongly constrained by WMAP data [1,35]. For each pair of components a1 and a2,

the relative entropy perturbation, Sa1a2 , vanishes:

Sa1a2 =
∆0

a1

˙̄ρa1/ρ̄a1
−

∆0
a2

˙̄ρa2/ρ̄a2
= 0 . (3.4)

For baryons, neutrinos, photons and dark matter this implies:

∆0
dm = ∆0

b =
3

4
∆0

γ =
3

4
∆0

ν , (3.5)

from which one obtains:

Ṽ 0
γ = Ṽ 0

b = Ṽ 0
ν = Ṽ 0

dm = −
5

4
P∆0

γ and Π̃0
ν = −P∆0

γ , (3.6)

with P = 1/(15 + 4Rν). Those are the standard adiabatic initial conditions for

velocity perturbations and anisotropic stress. Solving the eigenvalue problem for our

A0 matrix, it follows that dark energy also obeys adiabatic initial conditions given

by

∆0
de =

3

4

(
1 + w +

ξ

3

)
∆0

γ , (3.7)

Ṽ 0
de = −

5P

4
∆0

γ . (3.8)

Consequently, adiabatic initial conditions for the matter and radiation components

automatically imply adiabatic initial conditions for dark energy, alike to the case

for tracking scalar quintessence [33] or those obtained for dark energy-dark matter

couplings which do not depend explicitly on the Hubble rate4.

As a final comment, notice that the previous results do not depend on the fact

that we are using the expansion of the total fluid ΘT (and its perturbation K) to

define the dark coupling in Eq. (2.24). In fact one could have used the expansion

rate of any single specie, Θa. In that case, Eq. (2.25) should be replaced by:

Ea = ∆de +
x2

3
Ṽa −

3

2
(1 + wT )ṼT + 2ΦB (3.9)

which implies that all the contributions of the dark coupling going as x2ṼT in

Eqs. (2.26) and (2.28) should be replaced with x2Ṽa. This does not modify the

expression of the matrix A0 of Sec. 3.1, that encodes the evolution equations at early

times, as in the limit x → 0 all the x2–terms can be neglected. As a consequence our

results of Eqs. (3.7), and (3.8) would not be affected, and our conclusion on adiabatic

initial conditions remains unchanged.
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Ω
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Figure 1: Left (right) panel: 1σ and 2σ marginalized contours in the ξ–Ωdmh2 (ξ–w)

plane. The contours show the current constraints from WMAP7, HST, SN, H(z) and LSS

data taking into account the expansion rate perturbation K.

4. Data constraints

In this section we briefly revisit the constraints on the dark coupling ξ presented in

Ref. [16], adding to the analysis the contribution from the expansion rate pertur-

bation K and imposing adiabatic initial conditions for all fluids. We have therefore

modified the Boltzmann CAMB code [36] to incorporate the dark coupling ξ and the

K terms.

In the synchronous gauge, K = θT/(3H)+ḣ/(6H) and the perturbation equations

reduce to:

δ̇dm = −(kvdm +
1

2
ḣ) + ξH

ρde
ρdm

(δde − δdm) + ξ
ρde
ρdm

(
kvT
3

+
ḣ

6

)
, (4.1)

v̇dm = −Hvdm , (4.2)

δ̇de = −(1 + w)(kvde +
1

2
ḣ)− 3H (1− w)

[
δde +H (3(1 + w) + ξ)

vde
k

]
(4.3)

−ξ

(
kvT
3

+
ḣ

6

)
,

v̇de = 2H

(
1 +

ξ

1 + w

)
vde +

k

1 + w
δde − ξH

vdm
1 + w

, (4.4)

where vT is defined in Eq. (A.10).

We have extracted the cosmological parameters by means of the publicly avail-

able Markov Chain Monte Carlo package cosmomc [37]. The cosmological model is

described by ten free parameters

{ωb, ωdm, θCMB, τ,Ωk, fν , w, ξ, ns, As} ,

4See Ref. [18] for Qa = ±Γρdm, where Γ is a constant.
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where ωb = Ωbh
2 and ωdm = Ωdmh

2 are the current baryon and dark matter densities

respectively, θCMB is proportional to the ratio of the sound horizon to the angular

diameter distance, τ is the reionization optical depth, Ωk is the spatial curvature,

fν = Ων/Ωdm refers to the neutrino fraction, ns is the scalar spectral index and As

the amplitude of the primordial spectrum.

The analysis is restricted to negative couplings and also w > −1 (to ensure

the avoidance of phantom behaviour), exactly as it we did previously in Ref. [16].

The basic data set we exploit here includes a prior on the Hubble parameter of

72 ± 8 km/s/Mpc from the Hubble key project (HST) [38], the constraints coming

from the latest compilation of supernovae (SN) [39], the matter power spectrum

(large scale structure data or LSS data) from the spectroscopic survey of Luminous

Red Galaxies from the Sloan Digital Sky Survey survey [40], the H(z) data from

galaxy ages [41] and the WMAP7 data [1, 35].

CMB constraints the amount of dark matter at redshift ∼ 1000. In the presence

of a negative dark coupling, the energy flows from dark matter to dark energy, thus

dark matter energy density is smaller today as it can be seen in Fig. 1 (left panel).

This effect is compensated for large scale structures by a larger growth of dark

matter perturbation (see e.g. [42]). Figure 1, left (right) panel illustrates the 1σ and

2σ marginalized contours obtained in the ξ–Ωdmh
2 (ξ–w) plane. We verified that

the results do not differ significantly if including WMAP5 data (as we had done in

Ref. [16]) instead of WMAP7 data.

Overall, the results show that the addition to the analysis of the perturbation

expansion rate K leaves basically unaffected the quantitative constraints on the cos-

mological parameters previously obtained in Ref. [16]. Indeed, all the additional

terms introduced to make perturbations gauge invariant give negligible contributions

at observable scales.

5. Conclusions

Interacting dark energy-dark matter cosmologies in which the coupling term is pro-

portional to the Hubble expansion rate are revisited. While in previous works the

perturbation in the Hubble expansion rate was neglected, it is illustrated here how

the inclusion of such a term is mandatory to satisfy the gauge invariance of the the-

ory. It also serves as a guide to define a covariant formulation of the dark sector

interaction. In this work, the latter has been chosen to be expressed in terms of the

expansion rate associated to the total fluid. This choice is however not unique, we

could have used the expansion rate of any other fluid. For the case under study, we

compute the linear perturbation evolution using a gauge invariant formalism. After

imposing adiabatic initial conditions on the matter and radiation fluids, we find that

the initial conditions for the coupled dark energy fluid are also adiabatic. This result

is independent of the choice in the covariant formulation of the expansion rate. The
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new terms arising from the expansion rate perturbation have negligible quantitative

impact on the constraints on cosmological parameters previously obtained in the

literature. A new analysis has been performed using the latest WMAP7 data.
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A. Gauge invariant formalism

The conventions we use are mostly from Ref. [22] with a few exceptions. For pertur-

bations in flat space time, the perturbation variables can be expanded by harmonic

functions Y (S)(x, k) satisfying to (∇x + k2)Y (S) = 0. In the following we focus on

scalar perturbations for which we define:

Y
(S)
i = −

1

k
Y

(S)
|i , (A.1)

Y
(S)
ij =

1

k2
Y

(S)
|ij +

1

3
γijY

(S) . (A.2)

A.1 Metric perturbations

For the metric defined in Eq. (2.1), expanding in the Fourier basis the independent

perturbations, we denote:

A → ÃY (S) ,

Bi → B̃LY
(S)
i ,

Hij → H̃Lγij + H̃TY
(S)
ij ,

where H̃ijγ
ij = 0. From now on, for sake of simplicity we will drop the tilde symbols.

Remember that all these quantities are represented by the correspondent Fourier

expansion and depend only on time and on the 3-momentum k, while the position

dependence is left only in the basis Y elements.

Gauge transformations are associated to infinitesimal coordinate transformations

under which: (x0, xi) → (x̂0, x̂i) = (x0− T, xi −Li). It can be shown that the metric
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perturbation transforms as:

Â−A = HT + Ṫ , (A.3)

B̂ − B = −kT − L̇ , (A.4)

ĤL −HL = HL + kL/3 +HT , (A.5)

ĤT −HT = HT − kL . (A.6)

Before going to the gauge invariant variable definition, let us define some useful

metric quantities and their transformations:

σg =
1

k

(
ḢT − kB

)
, (A.7)

R = HL +
1

3
HT , (A.8)

K =
1

H

[
−HA +

k

3
vT + ḢL

]
, (A.9)

where vT is the center of mass velocity for the total fluid, satisfying

(1 + wT )vT =
∑

a

(1 + wa)Ωava . (A.10)

In the text is also sometimes used the following quantity:

Ka =
1

H

[
−HA +

k

3
va + ḢL

]
. (A.11)

The physical meaning of the quantities above is the following: σg represents the

shear perturbation, R is the curvature perturbation and K (Ka) is the expansion

rate perturbation of the total (a) fluid. These quantities are not gauge invariant but

transform as:

σ̂g − σg = kT , (A.12)

R̂ −R = R+HT , (A.13)

K̂ − K =
1

H

(
Ḣ − H2

)
T =

Ḣ

H
T , (A.14)

where H = H/a is the usual Hubble parameter defined in the proper time. From the

definition of Eq. (A.14) we see explicitly that we can identify K as the perturbation

of H .

We now define gauge invariant quantities associated to the metric and fluid

perturbations. Bardeen metric gauge invariants are defined [24] as:

ΨB = A−
H

k
σg −

1

k
σ̇g , (A.15)

ΦB = HL +
1

3
HT −

H

k
σg . (A.16)

– 12 –



One can also build the following gauge invariant observable related to the expansion

rate perturbation:

C = K −
1

k

˙̄H

H̄
σg = K −

3

2
(1 + wT )

σg

kH
, (A.17)

Ca = Ka −
1

k

˙̄H

H̄
σg = Ka −

3

2
(1 + wT )

σg

kH
. (A.18)

It is also useful to define the following gauge–invariant quantity:

A = ΨB −
Φ̇B

H
−

(
1−

Ḣ

H2

)
ΦB =

3

2
(1 + wT )

(
ṼT − ΦB

)
, (A.19)

with ṼT the (reduced) gauge invariant velocity of the total fluid defined by:

(1 + wT )ṼT =
∑

a

(1 + wa)ΩaṼa . (A.20)

A.2 Useful equations

The perturbation equations for the metric can be derived from Einstein equations:

ΦB +ΨB = −3
H2

k2

pTΠT

ρT
= −

H2

k2
ΩνΠν = −ΩνΠ̃ν

(
Π̃ =

Π

x2

)
, (A.21)

ΨB −
Φ̇B

H
=

3

2

H

k
(1 + wT ) VT =

3

2

∑

a

(1 + wa)ΩaṼa

(
Ṽ =

V

x

)
, (A.22)

ΦB =
∆T + 3(1 + wT )ṼT

3(1 + wT ) +
2
3
x2

=

∑
a

(
∆a + 3 (1 + wa) Ṽa

)
Ωa

∑
a 3 (1 + wa) Ωa +

2
3
x2

, (A.23)

where we have defined x = k/H. From the previous equation one can obtain the

following relation for the expansion rate perturbations:

C =

[
x2

3
−

3

2
(1 + wT )

]
ṼT , (A.24)

Ca =
x2

3
Va −

3

2
(1 + wT ) ṼT . (A.25)

For the sake of completeness we also provide the relation between the entropy per-

turbation Γa, defined in Eq. (2.7), and the sound speed in the rest frame of the fluid

c2Sa which is given by:

waΓa =
(
c2Sa − c2Aa

) [
∆a −

˙̄ρa
ρ̄a

(
ΦB

H
−

Va

k

)]
. (A.26)
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