833 research outputs found

    Angular momentum transport, layering, and zonal jet formation by the GSF instability: non-linear simulations at a general latitude

    Get PDF
    We continue our investigation into the non-linear evolution of the Goldreich–Schubert–Fricke (GSF) instability in differentially rotating radiation zones. This instability may be a key player in transporting angular momentum in stars and giant planets, but its non-linear evolution remains mostly unexplored. In a previous paper we considered the equatorial instability, whereas here we simulate the instability at a general latitude for the first time. We adopt a local Cartesian Boussinesq model in a modified shearing box for most of our simulations, but we also perform some simulations with stress-free, impenetrable, radial boundaries. We first revisit the linear instability and derive some new results, before studying its non-linear evolution. The instability is found to behave very differently compared with its behaviour at the equator. In particular, here we observe the development of strong zonal jets (‘layering’ in the angular momentum), which can considerably enhance angular momentum transport, particularly in axisymmetric simulations. The jets are, in general, tilted with respect to the local gravity by an angle that corresponds initially with that of the linear modes, but which evolves with time and depends on the strength of the flow. The instability transports angular momentum much more efficiently (by several orders of magnitude) than it does at the equator, and we estimate that the GSF instability could contribute to the missing angular momentum transport required in both red giant and subgiant stars. It could also play a role in the long-term evolution of the solar tachocline and the atmospheric dynamics of hot Jupiters

    Torsional waves driven by convection and jets in Earth’s liquid core

    Get PDF
    Turbulence and waves in Earth’s iron-rich liquid outer core are believed to be responsible for the generation of the geomagnetic field via dynamo action. When waves break upon the mantle they cause a shift in the rotation rate of Earth’s solid exterior and contribute to variations in the length-of-day on a ∼6-year timescale. Though the outer core cannot be probed by direct observation, such torsional waves are believed to propagate along Earth’s radial magnetic field, but as yet no self-consistent mechanism for their generation has been determined. Here we provide evidence of a realistic physical excitation mechanism for torsional waves observed in numerical simulations. We find that inefficient convection above and below the solid inner core traps buoyant fluid forming a density gradient between pole and equator, similar to that observed in Earth’s atmosphere. Consequently a shearing jet stream - a ‘thermal wind’ - is formed near the inner core; evidence of such a jet has recently been found. Owing to the sharp density gradient and influence of magnetic field, convection at this location is able to operate with the turnover frequency required to generate waves. Amplified by the jet it then triggers a train of oscillations. Our results demonstrate a plausible mechanism for generating torsional waves under Earth-like conditions and thus further cement their importance for Earth’s core dynamics

    Fate of lead, copper, zinc and antimony during chemical looping gasification of automotive shredder residue

    Get PDF
    Gasification experiments in this study were performed in a 2–4 MW indirect gasifier coupled to a semi-commercial CFB combustor at Chalmers University of Technology. Experiments were carried out during 13 days with automotive shredder residue (ASR), giving a unique opportunity to investigate the bed material under realistic conditions and with long residence times. The metal rich ash was accumulated in the bed, gaining some oxygen carrying capabilities, creating a chemical looping gasification (CLG) process. This study aims to expand the knowledge about the chemistry of zinc, copper, lead and antimony during CLG of ASR. Several experimental methods have been utilized, such as XRD, SEM-EDX and XPS along with detailed thermodynamic calculations to study chemical transformations that can occur in the system. Thermodynamic calculations showed that the reduction potential affect the phase distribution of these elements, where highly reduction conditions result in heavy metals dissolving in the slag phase. Copper and zinc ferrites, lead silicates and antimony oxides were identified at the particle surfaces in the bottom ash. The formation of an iron rich ash layer plays an important role, especially for copper and zinc speciation. The main pathways in the complex CLG system have been discussed in detail

    Angular momentum transport by the GSF instability: non-linear simulations at the equator

    Get PDF
    We present an investigation into the non-linear evolution of the Goldreich–Schubert–Fricke (GSF) instability using axisymmetric and 3D simulations near the equator of a differentially rotating radiation zone. This instability may provide an important contribution to angular momentum transport in stars and planets. We adopt a local Boussinesq Cartesian shearing box model, which represents a small patch of a differentially rotating stellar radiation zone. Complementary simulations are also performed with stress-free, impenetrable boundaries in the local radial direction. The linear and non-linear evolution of the equatorial axisymmetric instability is formally equivalent to the salt fingering instability. This is no longer the case in 3D, but we find that the instability behaves non-linearly in a similar way to salt fingering. Axisymmetric simulations – and those in 3D with short dimensions along the local azimuthal direction – quickly develop strong jets along the rotation axis, which inhibit the instability and lead to predator-prey-like temporal dynamics. In 3D, the instability initially produces homogeneous turbulence and enhanced momentum transport, though in some cases jets form on a much longer time-scale. We propose and validate numerically a simple theory for non-linear saturation of the GSF instability and its resulting angular momentum transport. This theory is straightforward to implement in stellar evolution codes incorporating rotation. We estimate that the GSF instability could contribute towards explaining the missing angular momentum transport required in red giant stars, and play a role in the long-term evolution of the solar tachocline

    Solitary magnetostrophic Rossby waves in spherical shells

    Get PDF
    Finite-amplitude hydromagnetic Rossby waves in the magnetostrophic regime are studied. We consider the slow mode, which travels in the opposite direction to the hydrodynamic or fast mode, in the presence of a toroidal magnetic field and zonal flow by means of quasi-geostrophic models for thick spherical shells. The weakly nonlinear long waves are derived asymptotically using a reductive perturbation method. The problem at the first order is found to obey a second-order ordinary differential equation, leading to a hypergeometric equation for a Malkus field and a confluent Heun equation for an electrical wire field, and is non-singular when the wave speed approaches the mean flow. Investigating its neutral non-singular eigensolutions for different basic states, we find the evolution is described by the Korteweg–de Vries equation. This implies that the nonlinear slow wave forms solitons and solitary waves. These may take the form of a coherent eddy, such as a single anticyclone. We speculate on the relation of the anticyclone to the asymmetric gyre seen in the Earth's fluid core, and in state-of-the-art dynamo direct numerical simulations

    Relapsing polychondritis: state of the art on clinical practice guidelines

    Get PDF
    Due to the rarity of relapsing polychondritis (RP), many unmet needs remain in the management of RP. Here, we present a systematic review of clinical practice guidelines (CPGs) published for RP, as well as a list of the most striking unmet needs for this rare disease. We carried out a systematic search in PubMed and Embase based on controlled terms (medical subject headings and Emtree) and keywords of the disease and publication type (CPGs). The systematic literature review identified 20 citations, among which no CPGs could be identified. We identified 11 main areas with unmet needs in the field of RP: the diagnosis strategy for RP; the therapeutic management of RP; the management of pregnancy in RP; the management of the disease in specific age groups (for instance in paediatric-onset RP); the evaluation of adherence to treatment; the follow-up of patients with RP, including the frequency of screening for the potential complications and the optimal imaging tools for each involved region; perioperative and anaesthetic management (due to tracheal involvement); risk of neoplasms in RP, including haematological malignancies; the prevention and management of infections; tools for assessment of disease activity and damage; and patient-reported outcomes and quality of life indicators. Patients and physicians should work together within the frame of the ReCONNET network to derive valuable evidence for obtaining literature-informed CPGs

    Predictors of linkage to care following community-based HIV counseling and testing in rural Kenya

    Get PDF
    Despite innovations in HIV counseling and testing (HCT), important gaps remain in understanding linkage to care. We followed a cohort diagnosed with HIV through a community-based HCT campaign that trained persons living with HIV/AIDS (PLHA) as navigators. Individual, interpersonal, and institutional predictors of linkage were assessed using survival analysis of self-reported time to enrollment. Of 483 persons consenting to follow-up, 305 (63.2%) enrolled in HIV care within 3 months. Proportions linking to care were similar across sexes, barring a sub-sample of men aged 18–25 years who were highly unlikely to enroll. Men were more likely to enroll if they had disclosed to their spouse, and women if they had disclosed to family. Women who anticipated violence or relationship breakup were less likely to link to care. Enrolment rates were significantly higher among participants receiving a PLHA visit, suggesting that a navigator approach may improve linkage from community-based HCT campaigns.Vestergaard Frandse

    Infraorbital cutaneous angiosarcoma: a diagnostic and therapeutic dilemma

    Get PDF
    Background A cutaneous angiosarcoma is a rare malignant tumour of vascular endothelial cells with aggressive clinical behaviour and poor prognosis. Diagnosis is often delayed due to its variable and often benign clinical appearance. Case presentation This case presents a 64-year-old man with a six-month-history of a recurrent diffuse and erythematous painless swelling below the left eye. Several resections with intraoperatively negative resection margins followed, but positive margins were repeatedly detected later on permanent sections. Histopathologic examination of the specimen diagnosed a cutaneous angiosarcoma. Neither, finally achieved negative margins on permanent sections, nor a following chemotherapy could prevent the recurrence of the disease after five months and the patient's dead 21 months after the first diagnosis. Conclusion The case elucidates the current diagnostic and therapeutic dilemma of this entity, which shows an unfavourable clinical course in spite of multimodal therapy

    Ribosomal oxygenases are structurally conserved from prokaryotes to humans

    Get PDF
    2-Oxoglutarate (2OG)-dependent oxygenases have important roles in the regulation of gene expression via demethylation of N-methylated chromatin components1,2 and in the hydroxylation of transcription factors3 and splicing factor proteins4. Recently, 2OG-dependent oxygenases that catalyse hydroxylation of transfer RNA5,6,7 and ribosomal proteins8 have been shown to be important in translation relating to cellular growth, TH17-cell differentiation and translational accuracy9,10,11,12. The finding that ribosomal oxygenases (ROXs) occur in organisms ranging from prokaryotes to humans8 raises questions as to their structural and evolutionary relationships. In Escherichia coli, YcfD catalyses arginine hydroxylation in the ribosomal protein L16; in humans, MYC-induced nuclear antigen (MINA53; also known as MINA) and nucleolar protein 66 (NO66) catalyse histidine hydroxylation in the ribosomal proteins RPL27A and RPL8, respectively. The functional assignments of ROXs open therapeutic possibilities via either ROX inhibition or targeting of differentially modified ribosomes. Despite differences in the residue and protein selectivities of prokaryotic and eukaryotic ROXs, comparison of the crystal structures of E. coli YcfD and Rhodothermus marinus YcfD with those of human MINA53 and NO66 reveals highly conserved folds and novel dimerization modes defining a new structural subfamily of 2OG-dependent oxygenases. ROX structures with and without their substrates support their functional assignments as hydroxylases but not demethylases, and reveal how the subfamily has evolved to catalyse the hydroxylation of different residue side chains of ribosomal proteins. Comparison of ROX crystal structures with those of other JmjC-domain-containing hydroxylases, including the hypoxia-inducible factor asparaginyl hydroxylase FIH and histone Nε-methyl lysine demethylases, identifies branch points in 2OG-dependent oxygenase evolution and distinguishes between JmjC-containing hydroxylases and demethylases catalysing modifications of translational and transcriptional machinery. The structures reveal that new protein hydroxylation activities can evolve by changing the coordination position from which the iron-bound substrate-oxidizing species reacts. This coordination flexibility has probably contributed to the evolution of the wide range of reactions catalysed by oxygenases
    • …
    corecore