
This is a repository copy of Angular momentum transport by the GSF instability: non-linear
simulations at the equator.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/146375/

Version: Published Version

Article:

Barker, AJ orcid.org/0000-0003-4397-7332, Jones, CA and Tobias, SM (2019) Angular 
momentum transport by the GSF instability: non-linear simulations at the equator. Monthly 
Notices of the Royal Astronomical Society, 487 (2). pp. 1777-1794. ISSN 0035-8711 

https://doi.org/10.1093/mnras/stz1386

This article has been accepted for publication in Monthly Notices of the Royal Astronomical
Society. ©: 2019 The Author(s) Published by Oxford University Press on behalf of the 
Royal Astronomical Society. All rights reserved.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


MNRAS 487, 1777–1794 (2019) doi:10.1093/mnras/stz1386

Advance Access publication 2019 May 20

Angular momentum transport by the GSF instability: non-linear

simulations at the equator

A. J. Barker ,‹ C. A. Jones and S. M. Tobias
Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds LS2 9JT, UK

Accepted 2019 May 15. Received 2019 May 15; in original form 2019 February 8

ABSTRACT

We present an investigation into the non-linear evolution of the Goldreich–Schubert–Fricke

(GSF) instability using axisymmetric and 3D simulations near the equator of a differentially

rotating radiation zone. This instability may provide an important contribution to angular

momentum transport in stars and planets. We adopt a local Boussinesq Cartesian shearing

box model, which represents a small patch of a differentially rotating stellar radiation zone.

Complementary simulations are also performed with stress-free, impenetrable boundaries in

the local radial direction. The linear and non-linear evolution of the equatorial axisymmetric

instability is formally equivalent to the salt fingering instability. This is no longer the case

in 3D, but we find that the instability behaves non-linearly in a similar way to salt fingering.

Axisymmetric simulations – and those in 3D with short dimensions along the local azimuthal

direction – quickly develop strong jets along the rotation axis, which inhibit the instability

and lead to predator-prey-like temporal dynamics. In 3D, the instability initially produces

homogeneous turbulence and enhanced momentum transport, though in some cases jets form

on a much longer time-scale. We propose and validate numerically a simple theory for non-

linear saturation of the GSF instability and its resulting angular momentum transport. This

theory is straightforward to implement in stellar evolution codes incorporating rotation. We

estimate that the GSF instability could contribute towards explaining the missing angular

momentum transport required in red giant stars, and play a role in the long-term evolution of

the solar tachocline.

Key words: hydrodynamics – instabilities – waves – Sun: rotation – stars: rotation.

1 IN T RO D U C T I O N

The additional mixing and angular momentum transport caused by

various hydrodynamic (or magnetohydrodynamic) instabilities of

differential rotation can significantly modify the global properties

and internal structure of stars (e.g. Aerts, Mathis & Rogers 2018).

The changes induced by these effects are found to be very sensitive

to how they are modelled in stellar evolution codes (e.g. Meynet

et al. 2013), but the underlying physics behind these processes is at

present poorly understood.

Recent observational advances in helio- and asteroseismology

have highlighted our poor understanding of the mechanisms of

angular momentum transport in the radiation zones of the Sun

(Thompson et al. 2003; Hughes, Rosner & Weiss 2007) and solar-

type stars, as well as intermediate-mass stars at various stages of

evolution (Aerts et al. 2018), particularly during the red giant phase

⋆ E-mail: A.J.Barker@leeds.ac.uk

(e.g. Cantiello et al. 2014; Eggenberger et al. 2017). To interpret

these (and future) observations, it is now essential to understand

better the mechanisms of angular momentum transport and the

resulting mixing of chemical elements in stars.

A potential key player in angular momentum transport in stellar

radiation zones is the Goldreich–Schubert–Fricke (GSF) instability

(Goldreich & Schubert 1967; Fricke 1968). This is an axisymmetric

hydrodynamic instability of differential rotation. It is essentially a

centrifugal instability enabled by the action of thermal diffusion,

which neutralizes the otherwise stabilizing effects of buoyancy in

a stably stratified region. The instability grows if the differential

rotation is sufficiently strong (e.g. Knobloch & Spruit 1982;

Rashid, Jones & Tobias 2008; Caleo & Balbus 2016). Stellar

evolution codes usually incorporate the transport due to the GSF,

and various other hydrodynamical instabilities, as a diffusion of

angular momentum with a prescribed diffusivity. However, current

models are inadequate; they are, for example, unable to reproduce

the observed rotational evolution of sub-giants and early red giant

stars (Cantiello et al. 2014; Eggenberger et al. 2017). In addition, a

C© 2019 The Author(s)
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1778 A. J. Barker, C. A. Jones and S. M. Tobias

diffusive approximation for the angular momentum transport is not

always appropriate. For example, in stably stratified turbulent flows,

momentum transport can be antifrictional rather than frictional (e.g.

McIntyre 2002; Tobias, Diamond & Hughes 2007).

The GSF instability may also occur in astrophysical discs, where

it has been proposed as a mechanism to drive turbulence and to stir

solids in the regions of protoplanetary discs that are stable to the

magnetorotational instability. In this context, it has been referred to

as the Vertical Shear Instability (VSI) (e.g. Urpin & Brandenburg

1998; Nelson, Gressel & Umurhan 2013; Barker & Latter 2015;

Lin & Youdin 2015; Latter & Papaloizou 2018). Global simulations

of the VSI in protoplanetary discs have been performed by e.g.

Nelson et al. (2013) and Stoll & Kley (2014), which demonstrate

that it produces wave activity but weak levels of angular momentum

transport.

In the context of stellar and planetary interiors, the non-linear

evolution of the GSF instability has only been studied previously

using axisymmetric simulations by Korycansky (1991) and Rashid

(2010). However, no previous work has studied its 3D non-linear

evolution. In this series of papers, we will present the results of 3D

(and some axisymmetric) simulations of the non-linear evolution

of the GSF instability in a local Cartesian model. This is the first

paper in the series, and herein we will focus on the properties of the

instability near the equator, since this is the simplest case.

The equatorial regions in a local model represent a special case

for the GSF instability. The rotation profile is locally barotropic

(invariant along the rotation axis), which means very strong dif-

ferential rotation is required to drive the instability. In particular,

we require the differential rotation to be centrifugally unstable

according to Rayleigh’s criterion for the instability to operate, i.e.

the angular momentum must decrease radially. At the equator, GSF

is also formally equivalent to the salt fingering instability in both

its linear and axisymmetric non-linear evolution (Knobloch 1982),

even if the 3D non-linear problems are strictly not equivalent. The

formal analogy is between salinity (or heavy elements) and angular

momentum, with an unstable angular momentum gradient behaving

just as an unstable salinity gradient in driving the instability on short

enough length-scales that thermal diffusion can operate efficiently.

This analogy means that we already have some idea about the non-

linear evolution of the equatorial GSF instability based on extensive

prior work on the salt fingering instability by e.g. Denissenkov

(2010), Denissenkov & Merryfield (2011), Traxler, Garaud &

Stellmach (2011), Brown, Garaud & Stellmach (2013), Garaud &

Brummell (2015), and Garaud (2018). However, a study such as

ours is required because non-linear equatorial GSF fundamentally

differs from salt fingering in three dimensions, and its 3D evolution

has not been explored previously.

Our goal is to understand the non-linear evolution of the GSF

instability and also to derive physically motivated prescriptions for

the transport of angular momentum that can be straightforwardly

implemented in stellar evolution codes. The structure of this

paper is as follows: in Section 2 we describe our model and the

numerical methods. We then review the key properties of the

linear axisymmetric equatorial GSF instability in Section 3, and

its formal equivalence with salt fingering in Section 4, before

proceeding to discuss the results of our non-linear simulations in

Section 5. We propose and validate numerically a simple theory

for the saturation of the GSF instability, and its consequent rates of

angular momentum transport, in Section 6. Finally, we discuss the

astrophysical implications of our results and present our conclusions

in Sections 7 and 8.

Figure 1. Local Cartesian model to study the GSF instability at the equator.

For illustration, the dark orange region may represent a radiation zone and the

yellow region an overlying convection zone. The Cartesian domain would

therefore represent a small patch of the radiation zone, such as in the solar

tachocline, for example. At the equator, the local gravity vector is normal to

the stratification surfaces, and eg = ex .

2 LO C A L C A RT E S I A N M O D E L : S M A L L

PAT C H O F A R A D I AT I O N Z O N E

We consider a local Cartesian representation of a small patch of a

stably stratified radiation zone of a differentially rotating star (or

planet). Our focus here is on dynamics near the equator, and we

will adopt coordinate axes (x, y, z) defined such that x is the local

radial, y is the local azimuthal, and z points along the rotation axis

(see Fig. 1), which is the local latitudinal direction. Note that our

choice of coordinates differs from Rashid et al. (2008). We consider

a domain of size Lx × Ly × Lz. The star is assumed to possess a

‘shellular’ differential rotation profile (e.g. Zahn 1992), such that

the angular velocity �(r) depends only on spherical radius,1 r.

However, at the equator, this is equivalent to considering a rotation

profile that instead varies with cylindrical radius. The differential

rotation can be locally decomposed into a uniform rotation � = �ez

and a linear (radial) shear flow U0 = −Sxey , where S is the local

value of d�/dln r.

Since the instability operates on length-scales that are much

shorter than a pressure scale height, we will adopt the Boussinesq

approximation. In this case, perturbations to the shear flow U0 in a

frame rotating with an angular velocity �, are governed by

Du + 2� × u + u · ∇U0 = −∇p + θex + ν∇2
u, (1)

Dθ + N 2
u · ex = κ∇2θ, (2)

∇ · u = 0, (3)

D ≡ ∂t + u · ∇ + U0 · ∇, (4)

where u is the velocity perturbation and p is a pressure. We define

our ‘temperature perturbation’ θ = αgT, where α is the thermal

expansion coefficient, g is the acceleration due to gravity, and T

is the usual temperature perturbation, so that θ has the units of an

acceleration. We adopt a background temperature profile T (x), with

uniform gradient αg∇T = N 2
ex , where N 2 > 0 is the square of

the buoyancy frequency in a stably stratified radiation zone. We

1More complex differential rotation profiles can be considered, if desired.
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GSF instability 1779

also adopt a constant kinematic viscosity ν and thermal diffusivity

κ . Here the background reference density has also been set to unity.

At the equator, the rotation is constant on cylinders and surfaces

of constant density and pressure are aligned. The model here is

therefore equivalent to the shearing box model of an accretion disc

with both radial stratification and shear, and with rotation being

locally constant on cylinders. If we consider a shellular profile of

differential rotation, this is no longer true at other latitudes, and the

normal to stratification surfaces must be determined by the thermal

wind equation if S,N 2, and � are prescribed. Alternatively, we can

impose a temperature gradient and use the thermal wind equation

to constrain the (baroclinic) shear.

In our simulations we adopt �−1 as our unit of time and the

length-scale d to define our unit of length, where

d =
( νκ

N 2

)
1
4

. (5)

The reason for this choice, by analogy with other double-diffusive

problems (e.g. Garaud 2018), is that the fastest growing mode

typically has a wavelength O(d). This choice permits us to select

the box size conveniently relative to the wavelength of the fastest

growing linear modes. We define N = N /� to be our dimension-

less buoyancy frequency and S = S/� to denote our dimensionless

shear rate, which can be thought of as a Rossby number. We also

define the Prandtl number

Pr =
ν

κ
. (6)

This problem then has three independent non-dimensional parame-

ters: S, Pr, and N2, in addition to the dimensions of the box, Lx, Ly,

and Lz in units of d, and the numerical resolution. These parameters

define the simulations performed, which are listed in Table A1. We

also define the Ekman number

E =
ν

�d2
= Pr1/2N, (7)

which can be used as an alternative independent parameter replacing

N, and the Richardson number

Ri =
N 2

S2
= E2Pr−1S−2, (8)

which is not an independent quantity here. These non-dimensional

numbers allow results to be compared with those of Rashid et al.

(2008).

The non-dimensional momentum and heat equations can be

written in the form

Du + 2ez × u − Sux ey = −∇p + θex + E∇2
u, (9)

Dθ + N2ux =
E

Pr
∇2θ, (10)

where we have scaled the time by �−1, lengths by d, velocities by

�d, and the temperature T = θ /gα by �2d/gα. We have not added

hats to denote non-dimensional quantities (i.e. ux, uy, uz, and θ )

to simplify the presentation. All formulae below are written using

dimensionless quantities unless otherwise specified.

A modified version of the Cartesian pseudo-spectral code SNOOPY

is used for most of the simulations (Lesur & Longaretti 2005). This

uses a basis of shearing waves to deal with the linear spatial variation

of U0, which is equivalent to using shearing-periodic boundary

conditions in x. In real space, these specify that

ux

(

−
Lx

2
, y, z, t

)

= ux

(

Lx

2
, (y − SLx t)mod(Ly), z, t

)

, (11)

and similarly for the other variables. We adopt periodic boundary

conditions in y and z. The code uses a third-order Runga–Kutta

time-stepping scheme and deals with the diffusion terms using an

integrating factor. Further details regarding the code can be found

in e.g. Lesur & Longaretti (2005). The parameters and numerical

resolutions (i.e. the number of Fourier modes in x, y, and z) that we

adopt are listed in Table A1, and we note that the non-linear terms

are fully de-aliased using the 3/2 rule.

We have thoroughly tested the code to ensure that it correctly

captures the linear growth of the GSF instability (according to

the predictions of Section 3 below). We have also tested a few

axisymmetric simulations against Garaud & Brummell (2015) to

ensure that the instability correctly behaves in the same manner

as the non-linear evolution of the salt fingering instability in the

relevant parameter regime (see Section 4 for an explanation). We

ensure that each simulation is adequately resolved by either running

selected simulations at higher resolution to ensure convergence of

the bulk statistics, or by ensuring that the relative spectral kinetic

energy in the modes at the de-aliasing wavenumber is no larger than

10−3 of the maximum.

We also enforce the box-averaged velocity components (i.e. the

zero wavenumber mode) to be zero periodically (with a typical

period of between 1 and 20 time steps) to avoid unphysical growth

of these quantities. This was found to be necessary when the flow

is centrifugally unstable, since this component can grow owing to

small numerical errors even though it is not coupled non-linearly to

the other modes (and so should not grow if it is zero initially).

A number of 3D simulations were also performed using the

spectral element code Nek5000 (Fischer, Lottes & Kerkemeier

2008). These simulations solve equations (1)–(4) for the same linear

shear flow as above. In a star, the shear will slowly evolve in time,

and this imposed shear corresponds to the value of the shear at

a particular moment in its evolution. This allows us to consider

different boundary conditions to shearing-periodic conditions in x,

and these simulations are presented only in Section 5.3. In particular,

we adopt impenetrable, stress-free, fixed temperature conditions at

the boundaries in x for these simulations. These specify that

θ = ux = ∂xuy = ∂xuz = 0 on x = ±
Lx

2
, (12)

which corresponds with the set-up considered by Rashid et al.

(2008), albeit using a different definition of the coordinate axes.

Nek5000 partitions the domain into a set of E non-overlapping

elements, and within each element the velocity components and the

pressure are represented as tensor product Legendre polynomials of

order Np and Np − 2, respectively, defined at the Gauss–Lobatto–

Legendre and Gauss–Legendre points. The total number of grid

points is EN 3
p . We use a third-order implicit–explicit scheme with a

variable time step determined by a target Courant-Friedrichs-Lewy

(CFL) number (typically chosen to be 0.3). Our typical resolution

is E = 203 and Np = 10 (15 for the non-linear terms), unless

otherwise specified. The non-linear terms are fully de-aliased using

a polynomial order that is 3/2 larger for their evaluation than the

resolutions that are specified in Table A1. We have tested our set-up

of the GSF instability in Nek5000 by validating the code against

the linear growth rates discussed in Section 3).

3 AXI SYMMETRI C LI NEAR INSTA BI LI T Y

The fastest growing modes in linear theory are axisymmetric

(i.e. have an azimuthal wavenumber ky = 0), and in our local model

all variables vary as Re[exp (ikx + ikz + st)], where kx and kz are the

MNRAS 487, 1777–1794 (2019)
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1780 A. J. Barker, C. A. Jones and S. M. Tobias

radial and latitudinal (along �) wavenumbers. For clarity, we use

the dimensional form of equations (1)–(4) for the formulae in this

section. The growth rate s can be shown to satisfy (e.g. Goldreich

& Schubert 1967; Acheson & Gibbons 1978; Knobloch & Spruit

1982; Latter & Papaloizou 2018)

s2
ν sκ + asκ + bsν = 0, (13)

where sν = s + νk2, sκ = s + κk2, and

a = κ2
ep

k2
z

k2
, (14)

b = N 2 k2
z

k2
, (15)

and k2 = k2
x + k2

z . We also define the squared epicyclic frequency

κ2
ep = 2�(2� − S). In the GSF instability we consider cases which

are stable in the absence of diffusion, but which are unstable when

diffusion is added and the Prandtl number is small. The criterion for

the non-diffusive (dynamical) ν = κ = 0 problem to give stability is

the Solberg–Høiland criterion for axisymmetric adiabatic, inviscid,

perturbations, which are stable if

κ2
ep + N 2 > 0. (16)

When diffusion is restored, thermal diffusion can allow instability

to occur even when equation (16) is satisfied. The criterion for

instability is now

κ2
ep + PrN 2 < 0. (17)

Note that Pr < 1, N 2 > 0, and κ2
ep < 0 are required for the GSF

instability to operate. With shearing-periodic boundary conditions

in x, the fastest growing modes are ‘elevator modes’ that do not

vary along x (kx = 0), with kz �= 0. On the other hand, only

modes with kx �= 0 are permitted when impermeable boundaries are

considered in x. The restoring action of stratification is maximal on

the modes excited at the equator, and the instability requires strongly

differentially rotating flows that are centrifugally unstable with

κ2
ep < 0. The fastest growing kz may be determined by maximizing

equation (13) with respect to kz, i.e. by solving

2Prsνsκ + s2
ν + a + Prb = 0. (18)

The maximum growth rate and the corresponding wavenumber kz

are then determined by solving equations (13) and (18).

In Fig. 2 we illustrate the growth rate on the (kx, kz) plane (top

panel), and for elevator modes as a function of kz (bottom panel),

for an example with S = S/� = 2.1, N2 = N 2/�2 = 10, and Pr

= 10−2. The top panel shows that the fastest growing modes have kx

= 0, and both panels demonstrate that the wavelength of the fastest

growing mode (and that of the unstable modes in general, for these

parameters) is O(d).

4 A NA L O G Y W I T H S A LT F I N G E R I N G FO R

THE A X ISY M M ETRIC EQUATO RIAL GSF

In this section, we briefly reiterate the equivalence of the axisym-

metric equatorial GSF instability at the equator with the well-

studied salt fingering instability. This is helpful to understand the

non-linear evolution of the instability, and allows us to check

our axisymmetric simulations against the 2D simulations of salt

fingering by e.g. Garaud & Brummell (2015). This analogy was

first discussed by Goldreich & Schubert (1967) and demonstrated

formally by Knobloch (1982). The non-linear equations governing

Figure 2. Top: base 10 logarithm of the growth rate of the axisymmetric

GSF instability on the (kx, kz)-plane with S = 2.1, N2 = 10, Pr = 10−2.

Bottom: growth rate of elevator modes on a logscale with kx = 0 as a function

of kz. The top panel shows that the fastest growing modes at the equator

have kx = 0, and that these modes have kz = O(d−1).

the salt fingering instability for axisymmetric (y-invariant) flows are

(e.g. Garaud 2018), in dimensional form,

Dux = −∂xp + (θ − μ) + ν∇2ux, (19)

Duz = −∂zp + ν∇2uz, (20)

Dθ = −N 2ux + κ∇2θ, (21)

Dμ = −N 2
μux + κμ∇2μ, (22)

Duy = ν∇2uy, (23)

D = ∂t + (ux∂x + uz∂z), (24)

MNRAS 487, 1777–1794 (2019)
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GSF instability 1781

where we have taken the local gravity direction to be along x to be

consistent with our set-up in Section 2, μ is the salinity (or heavy

element content), N 2
μ is the background salinity (or heavy element)

gradient, and κμ is the saline diffusivity (or diffusivity of heavy

elements). For y-invariant solutions, uy is passively advected and

plays no role in the evolution of any instabilities.

For comparison, the evolution of the axisymmetric (y-invariant)

equatorial GSF instability is governed by equations (1)–(4) (with

∂y = 0), i.e. by

Dux = −∂xp + (θ + 2�uy) + ν∇2ux, (25)

Duz = −∂zp + ν∇2uz, (26)

Dθ = −N 2ux + κ∇2θ, (27)

Duy = −(2� − S)ux + ν∇2uy, (28)

D = ∂t + (ux∂x + uz∂z), (29)

where these are written in dimensional form. This system is

formally equivalent to equations (19)–(23) for fully non-linear

axisymmetric solutions as long as κμ = ν, and we also identify

μ = −2�uy, and N 2
μ = 2�(2� − S) = κ2

ep, so that μ represents

an angular momentum stratification. The linear GSF instability

is therefore also equivalent to salt fingering. However, it should

be realized that for fully 3D (non-y-invariant) solutions, the non-

linear equations describing salt fingering and GSF are no longer

equivalent owing to the presence of uy in the advection term. This

means that while the axisymmetric evolution of both instabilities is

formally identical (so we should obtain similar results to e.g. Garaud

& Brummell 2015 and Xie, Julien & Knobloch 2019), the 3D

evolution of the equatorial GSF instability differs from that of salt

fingering.

5 N ON-LINEA R R ESULTS

We wish to explore the non-linear evolution of the instability and

how this differs between axisymmetric and 3D simulations as a

function of S, N2, Pr, and Ly (which can be used to probe the

importance of 3D effects). We also wish to analyse the efficiency of

angular momentum transport, which is quantified by the Reynolds

stress 〈uxuy〉, where 〈 · 〉 represents a volume average. An ‘effective

viscosity’ can also be defined on dimensional grounds by the sum

of the kinematic viscosity with νE, where νE = 1
S
〈uxuy〉, whether

or not the turbulence acts in the manner of an eddy diffusion for

angular momentum.

We initialize the flow using solenoidal random noise of amplitude

10−3 for all wavenumbers in the range î, ĵ , k̂ ∈ [1, 21], where kx =
2π
Lx

î, ky = 2π
Ly

ĵ , and kz = 2π
Lz

k̂. The domain size is chosen so that Lx

= Lz = 100d, which is sufficient to contain several wavelengths of

the fastest growing modes in each of our simulations. Ly is varied

separately in the 3D simulations.

5.1 Illustrative axisymmetric simulations

We begin with a set of illustrative axisymmetric simulations with

Pr = 10−2, N2 = 10, with S = 2.1 and S = 2.5. Note that S >

2 is required for the shear flow to be centrifugally unstable in the

absence of stratification, but that the flow is stable in the absence of

thermal diffusion according to equation (16) (which would require

S > 7 for adiabatic axisymmetric instability).

Fig. 3 shows the evolution of the volume-averaged kinetic

energy K = 1
2
〈|u|2〉 (top panel), 〈uxuy〉 (top middle), the RMS

latitudinal velocity vz =
√

〈u2
z〉 (bottom middle), and minus the

radial buoyancy flux −〈uxθ〉, in simulations with S = 2.1. The

axisymmetric simulation is shown as the red line. This figure also

shows the results from 3D simulations with various Ly, which

will be discussed in Section 5.2. Snapshots of the y-averaged

uy and uz velocity components in the (x, z)-plane at several

times are shown in Fig. 4 for the axisymmetric simulation with

S = 2.1.

After the initial saturation at t ∼ 130, there is a secondary

growth of strong latitudinal shear flows (along z), which quickly

dominate the energy, as shown in the third panel of Fig. 3. The

spatial structure of the flow is shown in the bottom two right-hand

panels of Fig. 4, which illustrates that these latitudinal flows possess

significant radial (along x) shear. Following the development of

these strong latitudinal shear flows, the angular momentum transport

is significantly inhibited, and undergoes chaotic bursty dynamics,

as is shown in the second panel of Fig. 3.

The development of these strong latitudinal shear flows in an

axisymmetric simulation is shown in snapshots at various times

in Fig. 4, and as a Hovmöller diagram (y- and z-averaged uz as

a function of x and t) in Fig. 5. During the linear growth phase,

at t = 100, uy ∼ uz, but shortly after the initial saturation, uz jets

grow, and these jets merge until this component dominates. By t

∼ 2000, the latitudinal shear flow persists in a configuration with

two wavelengths in x, and strongly affects the radial propagation

of finger-like motions, as can be seen from uy in the bottom two

left-hand panels. The latitudinal shear flow then merges to form a

single wavelength in x by t ∼ 4000, which further enhances the

shear and reduces the angular momentum transport by shearing the

radial fingers and reducing their radial extent. The buoyancy flux

is also reduced when strong shears develop, which indicates that

these jets act as barriers to transport, much like zonal flows (e.g.

Diamond et al. 2005).

The latitudinal shear flows are even more pronounced in sim-

ulations with the stronger shear of S = 2.5. In Fig. 6 we show

the evolution of the same volume-averaged quantities as in Fig. 3

for these simulations (with the axisymmetric case shown in red),

along with comparison 3D simulations which will be described

further in Section 5.2. The latitudinal flows in this simulation

are not shown but are similar to those in Fig. 4 except that they

are stronger. Axisymmetric simulations exhibit bursty dynamics in

which strong latitudinal jets inhibit instability in a cyclic manner

reminiscent of predator-prey dynamics. This is similar to the effects

of zonal flows driven by convection in a rotating annulus (e.g.

Rotvig & Jones 2006; Tobias, Oishi & Marston 2018), and also those

driven by the elliptical instability (e.g. Barker 2016). Rapid cyclic

transitions occur between a state with strong latitudinal jets and

weak momentum transport, and a state with weaker latitudinal jets

and stronger momentum transport. We have also explored cases with

even stronger shears (S > 2.5), and these behave in a qualitatively

similar manner, except that larger S leads to even more violent

bursty dynamics.

Similar evolution, including the generation of latitudinal jets, has

been observed in the analogous 2D salt fingering problem by Garaud

& Brummell (2015), and also in an asymptotically reduced model

of this system by Xie et al. (2019).
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1782 A. J. Barker, C. A. Jones and S. M. Tobias

(a)

(b)

(c)

(d)

Figure 3. Temporal evolution of K, 〈uxuy〉, vz, and −〈uxθ〉, in a set of

simulations with S = 2.1, N2 = 10, Pr = 10−2, with various different Ly.

The strong dependence on Ly illustrates the importance of 3D effects on the

non-linear evolution of the GSF instability.

5.2 Illustrative three-dimensional simulations

We now present 3D simulations with various Ly values with other-

wise the same parameters as in Section 5.1 to explore the importance

of 3D effects, and to explore whether the strong latitudinal shear

flows are a robust feature. The importance of 3D effects can be seen

in Fig. 3, which shows the evolution of volume-averaged quantities

for several 3D simulations with S = 2.1, where results with Ly =
30, 50, and 100 can be compared with the axisymmetric simulation.

Snapshots of the y-averaged uy and uz velocity components in

the (x, z)-plane at several times are then shown in Fig. 7 for the

3D simulation with Ly = 100, which can be compared with the

axisymmetric case in Fig. 4.

The axisymmetric and 3D simulations behave similarly until just

after the initial saturation of the instability. However, the subsequent

evolution, including the generation of strong latitudinal shear flows,

depends strongly on Ly, and hence 3D effects are important. The

axisymmetric simulations, and the 3D ones with Ly = 30 and 50,

exhibit much larger kinetic energies than the case with Ly = 100

until t ∼ 4000, as is shown in the top panel of Fig. 3. The time taken

for latitudinal shear flows to grow is observed to depend on Ly (and

may also depend on the initial conditions).

The 3D simulation with Ly = 100 behaves similarly to the

axisymmetric simulation in the early non-linear phases, but by t

∼ 2000, it still has uz ∼ uy, and strong latitudinal jets are absent at

this stage. The flow is instead closer to a homogeneous turbulence

state. This is shown in snapshots at various times in Fig. 7. The initial

absence of strong latitudinal jets that advect and stretch the unstable

motions in x leads to enhanced, and persistent, momentum (and

buoyancy) transport relative to cases with smaller Ly, as is shown in

the second panel of Fig. 3. However, the latitudinal jets do eventually

develop in this example (and are shown in the bottom right-hand

panel of Fig. 7), even if their effects on the flow are somewhat

weaker than in the corresponding axisymmetric simulation.

The differences between axisymmetric and 3D simulations are

much clearer in a set of simulations with a stronger shear of S =
2.5. In Fig. 6 we show the evolution of the same volume-averaged

quantities as Fig. 3 for these simulations, which have Ly = 30,

50, and 100. The y-averaged uy and uz velocity components on

the (x, z)-plane are shown at t = 100 in Fig. 8. The instability

now saturates in homogeneous turbulence in all 3D simulations

for all Ly considered. However, the energy level attained and the

corresponding momentum transport does depend on Ly, with a trend

towards convergence for Ly � 50.

The striking predator-prey-like dynamics observed in the axisym-

metric simulation with S = 2.5 discussed in the previous section

does not occur in three dimensions for any case with Ly ≥ 30; jets are

not observed even at longer times (though they would presumably

also occur for S = 2.5 with small enough Ly). Presumably, strong

latitudinal shears can only persist when they are stable to parasitic

shear instabilities with long enough wavelengths along y. Naively,

we might expect a requirement on Ly � λx for these strong shears to

be suppressed, where λx is the radial wavelength of the latitudinal

shear flow.

The simulations in the previous section and this one highlight

that the non-linear evolution can significantly differ between ax-

isymmetric and 3D simulations. Axisymmetric simulations develop

strong latitudinal jets whereas 3D simulations with large enough Ly

prefer to saturate in homogeneous turbulence. This is reminiscent

of the results of Garaud & Brummell (2015) for salt fingering. This

is what we might have expected based on Section 4, but does not

directly follow from the formal analogy presented there.
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GSF instability 1783

Figure 4. Snapshots of y-averaged uy and uz in the (x, z)-plane for an axisymmetric simulation with S = 2.1, N2 = 10, Pr = 10−2 at various times. The top

panels show the linear growing modes, which have kx ∼ 0. The middle panels show the initial non-linear saturation, followed by the formation of latitudinal

(along z) jets. The bottom panels shows the strong latitudinal shear flows that have developed in the later stages, and their effects on the propagation of unstable

finger-like motions in x.
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1784 A. J. Barker, C. A. Jones and S. M. Tobias

Figure 5. Hovmöller diagram showing the x-averaged uz velocity compo-

nent as a function of x and t. This shows the formation and the merging of

latitudinal jets in the axisymmetric simulation with S = 2.1, N2 = 10, Pr =
10−2, as also shown in Fig. 4.

We have also explored 3D cases with even stronger shears (S >

2.5), and these behave in a qualitatively similar manner – though

see Section 5.4 for a further discussion of cases with very large

S. Given that the anisotropy in axisymmetric simulations, or those

with small domains along y, is artificially imposed (rather than

developing naturally from a more weakly constrained system), we

advocate that 3D simulations with Lx ∼ Lz ∼ Ly are likely to provide

the most useful information regarding the non-linear evolution of

the GSF instability in stars. Indeed, in real stars, there is no enforced

azimuthal periodicity on a short length-scale, so cases in which Ly is

large enough not to artificially constrain the flow are likely to be the

most realistic. We will therefore focus on these simulations when

we later consider the astrophysical consequences of our results. In

addition, the formation of latitudinal jets is likely to be related to

the adoption of periodic boundary conditions in the local latitudinal

direction.

5.3 Comparison with simulations with stress-free boundaries

in x

We will now briefly consider the effects of varying the boundary

conditions on the non-linear evolution. To do this we have performed

a pair of simulations with impenetrable, stress-free, fixed temper-

ature boundary conditions. These conditions differ from shearing-

periodic boundary conditions in two crucial ways: they allow the

flow to modify the background shear flow even at the boundaries,

and they also disallow elevator modes. We choose Pr = 10−2, N2

= 10, and S = 2.1 and S = 2.5, and we also adopt Ly = 30, since

this requires the fewest number of grid points in total to resolve the

flow.

In Fig. 9 we compare the evolution of volume-averaged quantities

for a case with shearing-periodic, and one with stress-free, boundary

conditions for each of S = 2.1 and S = 2.5, respectively. Fig. 10

shows corresponding snapshots of the flow in the (x, z)-plane for

the case with S = 2.1. In Fig. 9, the kinetic energy with stress-free

impenetrable boundaries is observed to grow due to the generation

of a strong uy flow which partially counteracts the imposed shear

flow. The kinetic energy growth is just like with shearing-periodic

boundaries, with the crucial difference that in this case the latitudinal

Figure 6. Temporal evolution of K, 〈uxuy〉, vz, and −〈uxθ〉, for a set of

simulations with S = 2.5, N2 = 10, Pr = 10−2 with various different Ly. This

clearly illustrates the importance of 3D effects on the non-linear evolution

of the GSF instability.
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GSF instability 1785

Figure 7. Snapshots of y-averaged uy and uz in the (x, z)-plane for a 3D simulation with S = 2.1, N2 = 10, Pr = 10−2, and Ly = 100 at various times. This can

be compared with the axisymmetric simulation in Fig. 4 and demonstrates that 3D effects can be important for the initial evolution, though in this case similar

latitudinal jets eventually form.
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1786 A. J. Barker, C. A. Jones and S. M. Tobias

Figure 8. Snapshots of y-averaged uy and uz in the (x, z)-plane for a 3D

simulation with S = 2.5, N2 = 10, Pr = 10−2, and Ly = 100 at t = 100 in

the saturated quasi-homogeneous turbulent state. The flow is very different

from the corresponding axisymmetric simulation, which is dominated by

strong latitudinal jets much like those in Fig. 4.

flow is in fact decreasing (bottom panel). The snapshots in Fig. 10

also illustrate that a strong uy shear has developed by t ∼ 200, which

gradually strengthens in time to dominate the flow by t ∼ 1000. The

shear in the total (background + perturbation) flow is now reduced

by the action of the instability, relative to the initial imposed shear.

However, note that this modification is still relatively weak even by

t = 960, and 〈uy〉y at x = 0 is approximately only 1.5 per cent of the

initial background shear velocity (−105 at x = 0). Similar behaviour

is found with S = 2.5, except that in this case the modification of

the shear with these boundary conditions is then much stronger.

These simulations clearly demonstrate that the GSF instability

produces angular momentum transport that reduces the overall

differential rotation. This kind of modification of the imposed

shear is not permitted by shearing-periodic boundary conditions,

so these simulations highlight that the long-term evolution of the

instability is dependent on the boundary conditions. However, the

initial saturation level is similar, even if the longer term non-

linear reduction of the total shear acts to reduce the momentum

transport over time compared with the cases with shearing-periodic

boundary conditions. The initial agreement between both sets

of simulations indicates that we may continue to use shearing-

periodic boundary conditions to probe the momentum transport,

at least during the initial phases of homogeneous turbulence. In

addition, since strong latitudinal jets are absent in simulations with

impenetrable radial boundaries, this suggests that we should focus

on the initial phases of homogeneous turbulence in our simulations

with shearing-periodic boundaries when constructing a model to

apply to astrophysics.

Figure 9. Comparison of the temporal evolution of K, 〈uxuy〉, and vz, for

a 3D simulation with stress-free boundaries (labelled ‘Nek’) and shearing-

periodic boundaries. The parameters are S = 2.1, N2 = 10, Pr = 10−2, and

Ly = 30. The energy with shearing-periodic boundaries grows due to the

development of strong latitudinal shear flows, but in the case with stress-free

impenetrable boundaries the energy instead grows due to the generation of

a strong uy flow which counteracts the imposed shear.

5.4 Simulations with very large imposed shears

The non-linear behaviour described in Section 5.2 is typical of most

of our simulations in which the GSF instability operates. However,

we observe different behaviour when S is very large. For our typical

value of N2 = 10, note that when S � 3, Ri = N2/S2 � 1. For these

large shears, the shear dominates over the stable stratification and

we might expect different non-linear evolution. Note also that if S ≤
7, the flow is linearly stable to adiabatic axisymmetric perturbations,

so simulations in this regime are still probing the action of the GSF
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GSF instability 1787

Figure 10. Snapshots of y-averaged uy in the (x, z)-plane from a 3D

simulation with stress-free boundaries at two different times. The parameters

are S = 2.1, N2 = 10, Pr = 10−2, and Ly = 30. The strong uy flow is evident,

which counteracts the imposed shear.

instability. Note that such large shears are probably not relevant in

astrophysics, where we typically expect Ri ≫ 1 except very close

to convection zones, but these simulations are nevertheless useful

in allowing us to explore the non-linear behaviour in cases where

we might expect the theory that we will present in the next section

to no longer apply.

In this section, we use 3D simulations with shearing-periodic

boundary conditions with Pr = 0.1, N2 = 10, Ly = 100, and S = 4,

5, 5.5, and 6 to illustrate the behaviour in these cases with strong

shear. In Fig. 11, we show the mean kinetic energy and 〈 uxuy〉 as

a function of time. Then, in Fig. 12, we show the y-averaged uy

and uz flow components at a given time in the turbulent state in a

simulation with S = 5, 5.5, and 6. We observe that the simulations

with S ≤ 5.5 reach a statistically steady turbulent state with only

small fluctuations about the mean kinetic energy and momentum

transport. On the other hand, the simulation with S = 6 is strongly

bursty, with large fluctuations in the kinetic energy and momentum

transport. The flow corresponding to this simulation is shown in the

bottom two panels of Fig. 12, which shows the presence of large-

scale flow structures in both uy and uz. Fig. 12 shows that as S is

increased, the flow saturates in large length-scale flows (which have

also been found in salt fingering by e.g. Brown et al. 2013, but not

necessarily for the same reason).

Linear theory predicts that larger values of S allow instability

for increasingly larger wavelength modes, but this cannot be the

(a)

(b)

Figure 11. Temporal evolution of K and 〈uxuy〉 for a set of simulations with

N2 = 10, Pr = 10−1, Ly = 100, for the strong shear values of S = 4, 5, 5.5,

and 6.

sole explanation for this behaviour. Indeed, the fastest growing

mode has a wavelength of λz ≈ 9.3 (with kx = 0) when S = 4,

and λz ≈ 12.5 when S = 6, but the flow structures in the non-

linear state are larger than this by more than a factor of 3 in the

latter case. Hence, the formation of large-scale flows for large

shears in likely to be related to the modification of the non-linear

cascade when the shear dominates over the stratification. Due to

their oscillatory nature, these large-scale flows may correspond with

large-wavelength gravity waves, and they significantly enhance the

transport over cases with smaller shears.

The formation of these large-scale flows is only observed for

very strong shears, and such large shears are unlikely to be

astrophysically relevant – the possible exception being very close to

interface between the convective and radiative regions in very early

phases of stellar evolution. Hence, we will not focus on explaining

these simulations with large S, though we will note that they do

saturate differently from those with smaller shears. This means that

we would not expect the non-linear behaviour in simulations with

large S to be explained by a theory (such as the one that we will

present in the next section) that is designed to explain simulations

with smaller values of S.

6 TH E O RY FO R S AT U R AT I O N O F TH E G S F

INSTABILITY

For astrophysical applications we would like to quantify the angular

momentum transport produced by the equatorial GSF instability.

It is simplest to focus on developing a model for the saturation

MNRAS 487, 1777–1794 (2019)
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1788 A. J. Barker, C. A. Jones and S. M. Tobias

Figure 12. Snapshots of y-averaged uy and uz in the (x, z)-plane for simulations with large shears, which illustrates the large-scale flows that develop. The

parameters are N2 = 10, Pr = 10−1, Ly = 100, and S = 5, 5.5, and 6, at the times indicated in the captions.

where the instability produces homogeneous turbulence, rather than

coherent shear flows. As a result, our primary focus here is on

explaining the non-linear behaviour in simulations with Lx = Lz

= Ly during the phases of homogeneous turbulence. A different

(quasi-linear) theory (see e.g. Marston, Qi & Tobias 2014) would

be required to explain the behaviour in simulations where strong

shear flows develop.

The simplest model of saturation of the equatorial instability is

to assume that the flow is dominated by the fastest growing linear

mode, and that this mode saturates when its growth rate balances its

non-linear cascade rate. The basic idea is that the fastest growing

modes predominantly involve radial (ux) flows with significant

latitudinal (along z) shear, and that parasitic shear instabilities acting

on these flows would be expected to grow, and draw energy from

the primary mode, at a rate of order kz|ux|. Note that the theory

in this section will be expressed using dimensional quantities for

clarity. We may expect saturation of the primary instability when

s ∼ kzux . (30)

We define a constant of proportionality A, which will be chosen

later to fit our simulation data, through

ux ≡ A
s

kz

. (31)

For a single linear mode, equations (1)–(4) relate the perturbations

by

uy =
(S − 2�)

sν

ux, (32)
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GSF instability 1789

uz = −
kx

kz

ux, (33)

θ =
−N 2

sκ

ux, (34)

in terms of the radial velocity ux, which is specified by equation (31).

The corresponding time- and volume-averaged rates of momentum

and heat transport, and the kinetic energy, for a single such mode

are given by

〈uxuy〉 =
(S − 2�)

2sν

|ux |2, (35)

〈uyuz〉 = −
(S − 2�)

2sν

kx

kz

|ux |2, (36)

〈uxuz〉 = −
kx

2kz

|ux |2, (37)

〈uxθ〉 =
−N 2

2sκ

|ux |2, (38)

〈
1

2
|u2|〉 =

1

4

(

1 +
(S − 2�)2

s2
ν

+
k2

x

k2
z

)

|ux |2. (39)

The values of s and kz for the fastest growing linear mode can be

determined by solving equations (13) and (18).

This simple theory predicts the energy and momentum transport

in terms of the properties of the linear instability and a single

constant A, which is supposed to be independent of the parameters of

our problem. However, with large values of S, or when strong shear

flows develop, we may expect the growth and cascade rates to be

modified by the shear, so this theory would no longer be expected to

hold, and a different type of theory would be needed (e.g. Bouchet,

Nardini & Tangarife 2013). We will determine A numerically by

fitting this model to our data from a suite of numerical simulations.

Note that the model predicts 〈uxuz〉 = 〈uyuz〉 = 0 for ‘elevator

modes’ with kx = 0. This theory is essentially equivalent to the ones

proposed and tested for salt fingering by Denissenkov (2010) and

Brown et al. (2013).

To test this theory we have performed a suite of simulations with

the parameters listed in Table A1. We show the comparison of the

theory and simulations for 〈uxuy〉d2/κ2 versus r, where

r =
(

Pr

Pr − 1

)

(

1 +
N 2

κ2
ep

)

, (40)

in the top panel of Fig. 13. Here all theoretical lines have been

computed using the same value of A = 4. We follow Brown et al.

(2013) in defining r to map the region of parameter space that is

unstable to the GSF instability to r ∈ [0, 1]. Note that when r ≥
1, the system is stable to the GSF instability, and when r < 0, the

system is unstable via the adiabatic Solberg–Høiland criterion, and

that the supercriticality increases as r → 0. We have scaled the

velocities in Figs 13 and 14 in units of κ/d, rather than �d as in the

earlier figures. This separates the data with different Pr, and also

aids the comparison with Fig. 5 of Brown et al. (2013) (which shows

the heavy element transport by the salt fingering instability). The

agreement is very good for most 3D simulations, indicating that this

theory is essentially correct to explain the transport driven by the

Figure 13. Comparison between the theory (solid lines) presented in

Section 6 and simulations (symbols) for several volume- and time-averaged

quantities. 3D simulations are represented as crosses and axisymmetric

simulations as open circles. The colours of each solid line and the symbols

represent a given set of parameters, as identified in the legend. The panel

captions represent the value of A used in the theory, which was varied in

the bottom two panels for a better fit. The top panel also shows the line Ri

= 1 as dotted lines, which indicates that the simulations that disagree with

theory for small r are those for which Ri � 1.

GSF instability. The agreement is also reasonable for 2D simulations

for values of r that are not too small r < 0.1 or so. However, there is

a departure from the theory for small values of r, which corresponds

with the large shear cases described in Section 5.4. The top panel

shows the line Ri = 1 as dotted lines for the first three values of Pr.

This indicates that the theory works well below this line, but fails

to apply when Ri � 1, which lies above these lines.

In the middle and bottom panels of Fig. 13, we also compare

the theoretical predictions for the scaled RMS radial (vxd/κ =
√

〈u2
x〉d/κ) and azimuthal velocity (vyd/κ =

√

〈u2
y〉d/κ). All
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(a)

(b)

Figure 14. Buoyancy flux −〈uxθ〉 and ‘turbulent Prandtl number’ PrE,

compared with theory for A = 4. Note that since we always have stable

stratification, the buoyancy flux is negative.

curves use the same value of A, but we have selected a different

constant value to fit the data better, with A = 3.4 for vx and A

= 9 for vy. The difference in the values of A required to fit the

data for these quantities is presumably because the flow does not

only consist of a single mode, but contains modes with several kx

and kz. In reality, the flow will consist of several modes, and the

theory implicitly involves an integration over the domain, for which

the spatial structure of the flow is important. As a result of the

flow consisting of several modes, quantities that involve different

products may require a different constant which accounts for this

integration. Hence, we may not expect the same A to be applicable

for all quantities.

We note that we obtain enhanced transport and velocity ampli-

tudes, not explained by our simple theory, for very large shears. For

these simulations, Ri = N2/S2 � 1, and the flow is no longer strongly

stratified. Those simulations are less relevant than those with larger

r for astrophysics, since we generally expect Ri = N2/S2 ≫ 1 in

stellar radiation zones, though as noted previously, such cases may

be relevant very near convection zones.

We have also calculated 〈uxuz〉, 〈uyuz〉, and the RMS latitudinal

velocity vz. The theory would predict these quantities to be exactly

zero because the fastest growing modes are elevator modes with kx

= 0. We observe them to be non-zero in general, but we confirm that

they fluctuate about zero, consistent with theoretical expectations.

In Fig. 14, we show the scaled buoyancy flux −〈uxθ〉d/κ , along

with the theoretical predictions assuming A = 4. The agreement is

very good apart from cases with small r, just as with 〈uxuy〉. The

buoyancy flux in 3D simulations typically exceeds that in axisym-

metric cases, presumably due to the presence of strong latitudinal

shear flows that inhibit radial transport in the axisymmetric case.

We may also crudely define a ‘turbulent Prandtl number’ by:

PrE =
ν + νE

κ + κE

=
ν + 〈uxuy〉/S

κ + |〈uxθ〉/N 2|
(41)

This is shown in the bottom panel of Fig. 14, and is found to

depend on r, and is not a constant that is equal to the laminar

Pr. Note that ν ≪ νE except when r ∼ 1. We find that PrE ≤
1 for all simulations performed. This indicates that the saturated

state maintains an effective Prandtl number smaller than one, which

supports further action of the GSF, rather than by saturating by

increasing PrE > 1, which would eliminate GSF.

6.1 The absence of ‘layering’ by the GSF instability

Salt fingering in the oceans is known to produce layering of the

density field, leading to the formation of density staircases, in which

convective layers are separated by thin diffusive interfaces. The

presence of layering is associated with a significant enhancement

in the rates of turbulent transport over that of a homogeneous

turbulent medium. For low Pr fluids, Brown et al. (2013) showed

that layer formation is possible by the salt fingering instability by

the ‘collective instability’ (which involves the excitation of large-

scale gravity waves that form layers when the waves break), but not

by the linear mean-field ‘γ -instability’ of Radko (2003) and Traxler

et al. (2011). The γ -instability involves slow-growing, horizontally

invariant but vertically varying modes. Both of these are secondary

instabilities that are driven by a positive feedback mechanism

between large-scale temperature and salinity perturbations, and the

turbulent fluxes induced by them, which can be derived within

a mean-field framework. Given the potential importance of such

layering for turbulent transport, we wish to determine whether

layering of the angular momentum field by the GSF instability may

be possible. In our simulations at the equator we do not observe

layering in uy. Instead, we observe the formation of uz jets, which

is not what we are attempting to explain here. In this section we are

interested in exploring whether the absence of observed layering in

uy is consistent with mean-field theories that have been tested for

the related salt fingering problem. This is motivated by the analogy

discussed in Section 4.

In order to explore whether the GSF instability would be expected

to produce such layering i.e. generate mean flows in uy that vary in

x, we can calculate whether the mean-field γ -instability may occur.

Given that the axisymmetric problem is equivalent to salt fingering,

by analogy with that problem, we may define the ‘density ratio’

R0 =
N 2

−κ2
ep

. (42)

The ratio of turbulent buoyancy flux to angular momentum flux is

γ =
(κN 2 − 〈uxθ〉)

−νκ2
ep + 2�〈uxuy〉

. (43)

If this is a monotonically increasing function of R0, the mean-field

γ -instability is unable to produce ‘layering’ of uy flows along z that

vary in x. In Fig. 15, we plot γ as a function of R0. This clearly

indicates that for the parameters considered, layering cannot occur

via the γ -instability for the equatorial GSF instability. The smallest

values of R0 for Pr = 0.1 are slightly non-monotonic, but still

increasing with R0. This is consistent with the absence of layering

in our simulations. These results are similar to those of Brown et al.

(2013) for salt fingering.

However, as we have discussed in Section 5.4, we do observe the

excitation of large-scale flows that may correspond with gravity
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Figure 15. The flux ratio γ as a function of the density ratio R0. Since this

is monotonically increasing, the mean-field γ instability of Radko (2003)

and Traxler et al. (2011) cannot produce layering in uy in these simulations.

This is consistent with our observations of the flow.

waves in our system for very large S (very small r), which

significantly enhance the transport over cases with smaller shears.

This is qualitatively different from the layering that we may expect

from a mean-field instability such as the γ -instability, and we have

also not observed the formation of layers in these cases with larger

shears either. It is possible that layering may occur for GSF away

from the equator, and this will be investigated in the second paper

in this series.

7 A STRO P HYSICAL IMPLICATIONS

We now turn to discuss the astrophysical implications of our results,

and to apply the theory presented in Section 6. To do so, we must

convert our dimensionless units to obtain physical quantities that

describe the rates of angular momentum transport. We can use

〈uxuy〉real = �2d2〈uxuy〉code, (44)

to relate the momentum transport in physical units (subscript ‘real’)

with that in our dimensional units (subscript ‘code’). To make the

simplest estimate to quantify the importance of the GSF instability,

we assume that it transports angular momentum radially in the form

of an eddy diffusion with a diffusivity νE. An effective viscosity

can then be defined by

νE =
〈uxuy〉real

S
= νS−1N−1Pr−1/2〈uxuy〉code, (45)

indicating the extent to which νE is enhanced over laminar viscosity

ν. The effective viscous time-scale for angular momentum transport

over a distance L is then

tν =
L2

νE

=
1

〈uxuy〉code

L2

d2
S�−1. (46)

This relates the transport to the length-scales of the differential

rotation.

We should note that our simulations have been performed with

accessible Pr values that are larger than in most astrophysical

applications by several orders of magnitude. Consequently, it is

possible that the values of 〈uxuy〉code may differ in reality for

much smaller Pr. However, as long as our simple theory remains

applicable, we speculate that this difference is unimportant. From

equation (31) we see that the velocity amplitudes depend on s

and kz, and from Section 3 the fastest growing modes have kz

= k. In the limit Pr → 0, equations (13) and (18) give finite

values, s →
√

2S − 4 and k → 2−1/4. This suggests the resulting

momentum transport should not depend strongly on Pr. However, it

is predicted to depend strongly on S.

We will briefly consider two astrophysical examples where

the GSF instability may be important. We will assume that the

instability operates in each case, and focus on estimating the rates of

momentum transport informed by the theory that we have validated

using simulations.

7.1 Solar tachocline

Our first example is the solar tachocline, and to apply our results

we can estimate the relevant parameters using a solar model (e.g.

Christensen-Dalsgaard et al. 1996). We find N ≈ 0.6–6 × 10−4s−1

(depending on which radial location is chosen), the local rotation

period is of order 25 d, i.e. � ≈ 3 × 10−6 s−1, with S/� ≈ 0.1–0.2,

κ ≈ 2.5 × 107 cm2 s−1, ν ≈ 20 cm2 s−1 (adopting some of these

numbers from Caleo, Balbus & Tognelli 2016). These numbers

predict

d ≈ 100–200 km, (47)

indicating that this instability occurs on short length-scales. Substi-

tuting the above numbers into equations (45) and (46), we obtain

νE ≈ 5 × 103cm2s−1〈uxuy〉code, (48)

and an effective viscous time-scale

tν ≈ 3Myr

(

L

0.01R⊙

)2
1

〈uxuy〉code

, (49)

to transport angular momentum over the radial extent of the

tachocline region, which is taken to have size L = 0.01R⊙. We note

that in simulations we find 〈uxuy〉code = 0.02–4 × 103, depending

on Pr and S. Using our simple theory, we estimate that if the solar

interior had a stronger differential rotation so that S = 3�, 〈uxuy〉code

≈ 5.

This estimate suggests that the GSF instability could be impor-

tant in producing long-term angular momentum transport in the

tachocline. We should point out though that at the equator, a value

S/� � 0.2 would be stable to the GSF. The differential rotation

required to drive the instability is however much weaker at non-

equatorial latitudes. Caleo et al. (2016) found that the GSF is at

most marginally unstable in the bulk of the solar radiative interior

according to the present-day internal rotation profile from helioseis-

mology. Rashid et al. (2008) suggested that in the tachocline (i.e.

where Ri is somewhat smaller, though still large), GSF instability is

possible at non-equatorial latitudes presently. In addition, the GSF

instability may have been important in the past in playing a role

in the evolution of the solar rotation profile (Menou & Le Mer

2006). Note that non-diffusive baroclinic instabilities may also be

important in the tachocline (e.g. Gilman & Dikpati 2014; Gilman

2016).

7.2 Red giant stars

Our second example is to estimate the relevance of the GSF

instability for angular momentum transport in red giant stars.

The models of Eggenberger et al. (2017) suggest an additional

viscosity of ν = 103–104 cm2 s−1 is required to explain the relatively

weak core-envelope differential rotations that are observed. For an

estimate, we adopt N ≈ 6 × 10−3s−1, � ≈ 10−8–10−7 s−1, S ∼ �,

MNRAS 487, 1777–1794 (2019)
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κ ≈ 109 cm2 s−1, ν ≈ 102–103 cm2 s−1 (using numbers from e.g.

Caleo et al. 2016; Eggenberger et al. 2017). These numbers predict

d ≈ 100 km, (50)

and using equation (45), we estimate:

νE ≈ 5 cm2s−1〈uxuy〉code, (51)

which may take a maximum value of νE ≈ 104 cm2 s−1 for the

optimal rates observed in our simulations at the equator. Using our

simple theory, we estimate that if the central regions of the star had

a much stronger differential rotation such that S = 5�, 〈uxuy〉code ≈
5 × 103.

This crude estimate suggests that an additional viscosity of νE

≈ 104 cm2 s−1 does appear to be possible by the GSF instability,

though we do not suggest that such a large viscosity is likely near

the equator. However, the GSF instability should be weakest at the

equator, and indeed, our non-equatorial simulations (Barker et al., in

prep) indicate a significant enhancement in the momentum transport

at mid-latitudes, by several orders of magnitude over that at the

equator for the same S. So such large rates of angular momentum

transport are not implausible, even if they are not expected at the

equator.

7.3 Relation to previous work

The axisymmetric simulations at the equator by Korycansky (1991)

obtain a turbulent state in which angular momentum is transported

by the GSF instability. Very broadly, our results are in agreement.

We have shown that the GSF instability can lead to a homogeneous

turbulent state with enhanced transport (in 3D), but we have also

identified significant differences between axisymmetric and 3D

simulations. Korycansky’s axisymmetric simulations may not have

been run for long enough to develop the strong latitudinal shear

flows that we have observed, or the boundary conditions may have

prevented their formation (just as we have observed in Section 5.3).

His simulations suggest that ux ∼ ℓs, where ℓ is the radial extent

of the fingers. We typically find ux ∼ s/kz, since parasitic shear

instabilities limit the amplitudes and radial extents of these motions.

He observed the angular momentum to be transported on a time-

scale tν ∼ 1/s, where s is the linear growth rate, whereas we find

tν ∼ L2/νE ∼ (kzL)2/s, where L is the desired length-scale. The

transport is weaker in general than that of Korycansky (1991) as

kzL is typically much smaller than one.

Menou & Le Mer (2006) assume νE = s/k2
r , taking values for

the fastest growing linear mode. This is equivalent to Korycansky

(1991), and is broadly similar but not identical to our results.

8 C O N C L U S I O N S

The GSF instability (Goldreich & Schubert 1967; Fricke 1968)

has long been considered as a possible mechanism to transport

angular momentum in the radiation zones of stars, but its non-linear

evolution has barely been explored until now. We have presented our

study into the non-linear evolution of the GSF instability near the

equator of a differentially rotating star using local hydrodynamical

simulations in a modified shearing box. Our work significantly

builds upon the pioneering axisymmetric simulations of Korycan-

sky (1991). We have performed a combination of axisymmetric

simulations over a much wider range of parameter values, as well

as the first 3D simulations of the GSF instability.

Our 3D simulations at the equator exhibit homogeneous turbu-

lence with sustained, and enhanced, rates of angular momentum

transport. We have proposed, and validated against our simulations,

a simple theory (motivated by Denissenkov 2010 and Brown et al.

2013 for salt fingering) for the non-linear saturation of the GSF

instability and its resulting angular momentum transport. This

theory is based on the idea that the linearly unstable modes are

primarily radial motions with short transverse length-scales, which

ought to be subject to strong parasitic shear instabilities that limit

their amplitudes. This theory (see Section 6) is straightforward to

implement in stellar evolution codes incorporating rotation.

Our crude estimates in Section 7 suggest that the GSF insta-

bility could provide an important contribution to the evolution of

differential rotation in red giant stars, and it may also have played

a role in long-term evolution of the solar tachocline. Further work

should explore the non-linear evolution of the GSF instability at

non-equatorial latitudes, where we expect the transport to be signif-

icantly enhanced over that at the equator. Indeed, our preliminary

simulations indicate that this is indeed the case, and that transport

may be enhanced by several orders of magnitude at mid-latitudes

(Barker at al., in prep). This suggests that the estimates made in this

paper should be viewed as lower bounds on the efficacy of the GSF

instability.

We have also revisited the formal equivalence between the linear

and non-linear evolution of the axisymmetric GSF instability at

the equator, with the much more widely studied salt fingering

instability. This is helpful to interpret our simulations, even if this

formal analogy does not hold in three dimensions. Our axisymmetric

simulations, and those in three dimensions in domains with short

dimensions along the local azimuthal direction, quickly develop

strong radially varying jets along the rotation axis. These jets inhibit

radial transport and produce bursty predator-prey-like temporal

dynamics. On the other hand, in 3D simulations with a domain

that is sufficiently elongated along the local azimuthal direction, we

observe a very different initial state of homogeneous turbulence,

with drastically different transport properties, though in some cases

jets do form on a much longer time-scale. Overall, these results

are similar to those obtained for the salt fingering instability

(Garaud & Brummell 2015). We advocate that 3D simulations

(with approximately cubical domains) are probably required so as

to not artificially constrain the turbulence, and that the phases of

homogeneous turbulence are likely to be the most astrophysically

relevant. This is because the strong latitudinal jets are absent in

simulations with impenetrable radial boundaries, and their existence

is probably also related to the imposition of periodic boundaries in

the local latitudinal direction.

It should be noted that the GSF instability does not bring the fluid

back to rotate as a solid body, since its onset requires significant

differential rotation (e.g. Caleo et al. 2016), but it pushes the system

towards marginal stability. Our crude estimates suggest that the

GSF instability may contribute to angular momentum transport

in stars, even if, in general, the instability is not a very efficient

one. This is because the unstable modes consist of ‘finger-like’

motions with very short transverse length-scales, so they cannot

travel far radially before they are destroyed by parasitic shear

instabilities. Nevertheless, our results indicate that this is still

a promising mechanism of angular momentum transport which

should be explored further.

Additional effects for future work include simulations at non-

equatorial latitudes (these are underway; Barker et al., in prep),

investigation of lower Prandtl numbers, the incorporation of gra-

dients in heavy elements (e.g. Knobloch & Spruit 1983), and the

inclusion of magnetic fields (e.g. Menou, Balbus & Spruit 2004;

Menou & Le Mer 2006).
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Table A1. Table of simulation parameters. Lz = Lx, and Nx = Nz, unless otherwise specified. The eighth and ninth column give the number of Fourier modes

in each direction. The two simulations with Nek5000 have ‘N’ in their Nx and Ny column entries and these numbers give the total number of grid points in each

direction for Nx and Ny, computed using an element distribution with Np = 10 points in each element. Simulation parameters not listed in this table are given

in Section 2. The data listed to the right of the vertical lines are derived from the simulation results. Our simulation units are determined by setting � = d = 1.

Pr N2 S Ri RiPr Lx Ly Nx Ny 〈uxuy〉
√

〈u2
y〉

√

〈u2
x〉

√

〈u2
z〉

10−2 10 2.1 2.27 0.0227 100 30 256 128 0.046 ± 0.02 0.32 ± 0.05 0.20 ± 0.04 1.46 ± 0.23

10−2 10 2.1 2.27 0.0227 100 30 200N 60N 0.045 ± 0.02 0.89 ± 0.62 – 0.45 ± 0.19

10−2 10 2.1 2.27 0.0227 100 50 256 256 0.067 ± 0.02 0.37 ± 0.04 0.25 ± 0.04 1.24 ± 0.30

10−2 10 2.1 2.27 0.0227 100 100 256 256 0.066 ± 0.02 0.33 ± 0.04 0.26 ± 0.03 1.14 ± 0.26

10−2 10 2.1 2.27 0.0227 100 0 256 1 0.053 ± 0.02 0.33 ± 0.04 0.22 ± 0.04 1.30 ± 0.28

10−2 10 2.3 1.89 0.0189 100 30 256 128 1.94 ± 0.14 1.70 ± 0.13 1.62 ± 0.07 2.70 ± 0.21

10−2 10 2.3 1.89 0.0189 100 0 256 1 0.37 ± 0.44 1.15 ± 0.37 0.58 ± 0.35 6.54 ± 1.7

10−2 10 2.5 1.6 0.016 100 30 256 128 5.50 ± 0.35 2.89 ± 0.11 2.80 ± 0.08 3.3 ± 0.14

10−2 10 2.5 1.6 0.016 100 30 200N 60N 0.55 ± 0.32 10.04 ± 5.97 – 1.50 ± 0.78

10−2 10 2.5 1.6 0.016 100 50 256 256 4.39 ± 0.29 2.48 ± 0.10 2.55 ± 0.08 2.89 ± 0.11

10−2 10 2.5 1.6 0.016 100 100 256 256 3.93 ± 0.13 2.29 ± 0.05 2.44 ± 0.04 2.76 ± 0.05

10−2 10 2.5 1.6 0.016 100 0 256 1 0.81 ± 0.96 1.91 ± 0.64 0.81 ± 0.50 6.95 ± 1.17

10−2 10 3 1.11 0.0111 100 30 256 128 21.8 ± 1.31 6.20 ± 0.22 5.69 ± 0.15 6.02 ± 0.14

10−2 10 3 1.11 0.0111 100 100 256 256 18.6 ± 0.57 5.51 ± 0.09 5.37 ± 0.07 5.76 ± 0.07

10−2 10 3 1.11 0.0111 100 0 256 1 2.67 ± 4.64 4.35 ± 1.72 1.49 ± 1.11 17.3 ± 5.9

10−2 10 3.5 1.11 0.0111 100 100 256 256 38.7 ± 4.64 8.52 ± 0.15 7.71 ± 0.11 8.20 ± 0.1

10−1 10 2.75 1.32 0.132 100 100 256 256 1.04 ± 0.12 2.27 ± 0.15 0.58 ± 0.04 1.04 ± 0.07

10−1 10 2.75 1.32 0.132 100 0 256 1 1.06 ± 0.13 2.31 ± 0.15 0.59 ± 0.04 1.10 ± 0.08

10−1 10 3 1.11 0.111 100 100 256 256 4.04 ± 0.99 4.77 ± 0.79 1.18 ± 0.12 2.26 ± 0.39

10−1 10 3 1.11 0.111 100 0 256 1 2.03 ± 1.2 3.77 ± 0.87 0.79 ± 0.28 5.02 ± 0.90

10−1 10 3.5 0.816 0.0816 100 100 256 256 7.57 ± 1.32 5.61 ± 0.57 2.04 ± 0.22 2.76 ± 0.41

10−1 10 3.5 0.816 0.0816 100 0 256 1 6.36 ± 4.44 6.73 ± 1.80 1.57 ± 0.64 7.55 ± 1.1

10−1 10 4 0.625 0.0625 100 100 256 256 13.19 ± 0.71 7.00 ± 0.19 3.02 ± 0.09 3.67 ± 0.1

10−1 10 4 0.625 0.0625 100 0 256 1 10.56 ± 13.7 9.5 ± 3.98 2.18 ± 1.44 15.66 ± 4.6

10−1 10 4.5 0.494 0.0494 100 100 256 256 24.3 ± 1.14 9.12 ± 0.22 4.7 ± 0.12 5.72 ± 0.14

10−1 10 5 0.4 0.04 100 100 256 256 72.5 ± 5.99 14.4 ± 0.58 9.6 ± 0.44 11.22 ± 0.46

10−1 10 5.5 0.33 0.033 100 100 256 256 282.8 ± 25.7 30.2 ± 1.93 19.9 ± 0.8 21.9 ± 0.9

1/3 10 4 0.625 0.208 100 100 256 256 2.03 ± 0.44 4.12 ± 0.22 0.61 ± 0.08 0.77 ± 0.05

1/3 10 4 0.625 0.208 100 0 256 1 1.99 ± 0.22 4.19 ± 0.23 0.59 ± 0.04 0.78 ± 0.05

1/3 10 4.5 0.49 0.163 100 100 256 256 12.35 ± 3.76 11.0 ± 1.38 1.68 ± 0.26 2.37 ± 0.26

1/3 10 4.5 0.49 0.163 100 0 256 1 16.9 ± 3.83 13.5 ± 1.32 1.85 ± 0.23 4.17 ± 0.7

1/3 10 5 0.4 0.133 100 100 256 256 15.75 ± 2.15 11.4 ± 0.78 2.39 ± 0.22 3.05 ± 0.27

1/3 10 5 0.4 0.133 100 0 256 1 26.0 ± 15.8 16.9 ± 4.78 2.66 ± 0.96 11.2 ± 2.52

1/3 10 6 0.28 0.09 100 100 256 256 5303 ± 4730 131.0 ± 43.0 81.5 ± 27.0 78.3 ± 23.9

1/30 10 2.3 1.89 0.063 100 100 256 256 0.39 ± 0.04 1.09 ± 0.09 0.46 ± 0.03 1.06 ± 0.09

1/30 10 2.3 1.89 0.063 100 0 256 1 0.39 ± 0.04 1.11 ± 0.06 0.45 ± 0.03 1.19 ± 0.11

1/30 10 2.5 1.6 0.053 100 100 256 256 1.61 ± 0.42 2.08 ± 0.39 1.06 ± 0.1 2.07 ± 0.67

1/30 10 2.5 1.6 0.053 100 0 256 1 0.89 ± 0.39 2.00 ± 0.35 0.66 ± 0.16 3.53 ± 0.39

1/30 10 3 1.11 0.037 100 100 256 256 6.40 ± 0.27 3.80 ± 0.09 2.46 ± 0.05 2.96 ± 0.06

1/30 10 3 1.11 0.037 100 0 256 1 2.83 ± 1.91 4.22 ± 1.12 1.23 ± 0.49 9.11 ± 1.32

1/30 10 3.5 0.82 0.027 100 100 256 256 16.3 ± 0.58 6.03 ± 0.12 4.27 ± 0.07 4.97 ± 0.08

1/30 10 3.5 0.82 0.027 100 0 256 1 8.31 ± 5.03 7.52 ± 1.59 2.19 ± 0.71 10.7 ± 1.12

1/30 10 4 0.625 0.02 100 100 256 256 36.3 ± 1.38 9.02 ± 0.17 6.78 ± 0.13 7.74 ± 0.14

1/30 10 4 0.625 0.02 100 0 256 1 11.7 ± 18.9 9.61 ± 4.81 2.82 ± 2.06 18.6 ± 3.5

1/30 10 4.5 0.49 0.017 100 100 256 256 69.5 ± 2.57 12.8 ± 0.17 9.7 ± 0.16 10.9 ± 0.14

1/30 10 5 0.4 0.013 100 100 256 256 122 ± 6.2 17.7 ± 0.56 13.2 ± 0.31 14.6 ± 0.33

10−2 102 2.6 14.8 0.148 100 50 256 256 0.123 ± 0.04 0.67 ± 0.17 0.22 ± 0.06 0.25 ± 0.07

10−2 102 3 11.11 0.111 100 50 256 256 2.79 ± 0.33 3.92 ± 0.03 0.94 ± 0.08 2.38 ± 0.37

10−2 102 3 11.11 0.111 100 0 256 1 2.67 ± 4.67 4.35 ± 1.72 1.49 ± 1.11 17.4 ± 5.9

10−2 102 3.5 8.16 0.0816 100 50 256 256 7.14 ± 1.0 5.93 ± 0.60 1.67 ± 0.08 4.50 ± 0.58

10−3 102 2.1 22.68 0.02268 100 50 512 512 0.073 ± 0.01 0.38 ± 0.02 0.24 ± 0.02 0.57 ± 0.02

10−3 102 2.1 22.68 0.02268 100 0 512 1 0.039 ± 0.01 0.32 ± 0.03 0.16 ± 0.02 1.19 ± 0.14

10−3 102 2.5 16 0.016 100 50 512 512 3.85 ± 0.2 2.37 ± 0.07 2.29 ± 0.06 2.82 ± 0.07

10−3 102 2.5 16 0.016 100 0 512 1 0.69 ± 0.47 1.75 ± 0.38 0.7 ± 0.24 5.15 ± 0.52
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