652 research outputs found

    Special Article: Physical Activity, Physical Fitness, and Cardiovascular Risk Factors in Childhood

    Get PDF
    In adults, physical activity and exercise training are associated with reduced cardiovascular morbidity and mortality, a reduced likelihood of developing adverse cardiovascular risk factors, and improved insulin sensitivity. In childhood, participation in appropriate physical activity may prevent the development of cardiovascular risk factors in the future and complement treatment of existing cardiovascular risk factors, including hypertension, dyslipidemia, and overweight. Exercise in children can also significantly improve insulin sensitivity independent of weight loss. These e fects are mediated in overweight children by increases in lean body mass relative to fat mass and associated improvements in inflammatory mediators, endothelial function, and the associated adverse hormonal milieu

    Clinical and genetic characterisation of dystrophin-deficient muscular dystrophy in a family of Miniature Poodle dogs

    Get PDF
    Four full-sibling intact male Miniature Poodles were evaluated at 4–19 months of age. One was clinically normal and three were affected. All affected dogs were reluctant to exercise and had generalised muscle atrophy, a stiff gait and a markedly elevated serum creatine kinase activity. Two affected dogs also showed poor development, learning difficulties and episodes of abnormal behaviour. In these two dogs, investigations into forebrain structural and metabolic diseases were unremarkable; electromyography demonstrated fibrillation potentials and complex repetitive discharges in the infraspinatus, supraspinatus and epaxial muscles. Histopathological, immunohistochemical and immunoblotting analyses of muscle biopsies were consistent with dystrophin-deficient muscular dystrophy. DNA samples were obtained from all four full-sibling male Poodles, a healthy female littermate and the dam, which was clinically normal. Whole genome sequencing of one affected dog revealed a >5 Mb deletion on the X chromosome, encompassing the entire DMD gene. The exact deletion breakpoints could not be experimentally ascertained, but we confirmed that this region was deleted in all affected males, but not in the unaffected dogs. Quantitative polymerase chain reaction confirmed all three affected males were hemizygous for the mutant X chromosome, while the wildtype chromosome was observed in the unaffected male littermate. The female littermate and the dam were both heterozygous for the mutant chromosome. Forty-four Miniature Poodles from the general population were screened for the mutation and were homozygous for the wildtype chromosome. The finding represents a naturally-occurring mutation causing dystrophin-deficient muscular dystrophy in the dog

    Vitamin D in the general population of young adults with autism in the Faroe Islands

    Get PDF
    Vitamin D deficiency has been proposed as a possible risk factor for developing autism spectrum disorder (ASD). 25-Hydroxyvitamin D3 (25(OH)D3) levels were examined in a cross-sectional population-based study in the Faroe Islands. The case group consisting of a total population cohort of 40 individuals with ASD (aged 15–24 years) had significantly lower 25(OH)D3 than their 62 typically-developing siblings and their 77 parents, and also significantly lower than 40 healthy age and gender matched comparisons. There was a trend for males having lower 25(OH)D3 than females. Effects of age, month/season of birth, IQ, various subcategories of ASD and Autism Diagnostic Observation Schedule score were also investigated, however, no association was found. The very low 25(OH)D3 in the ASD group suggests some underlying pathogenic mechanism

    How Do Bone Marrow Lesions Cause Osteoarthritis Pain? a Structural and Functional Tissue-Based Study

    Get PDF
    Background/Purpose: Susceptibility to ankylosing spondylitis (AS) is primarily genetic; thus far 113 susceptibility variants for AS have been identified. However, most of the AS associated SNPs do not directly affect protein-coding genes. Studies of disease- and trait-associated SNPs suggest they may act by affecting gene regulatory regions in specific cell types or tissues. Therefore, identifying the AS relevant cell types is crucial for further mechanistic studies. Methods: We applied several bioinformatics methods to utilize epigenetic, gene and protein expression information to identify the primary relevant cell types through which genetic variants associated with AS operate. In total, there are 113 AS associated loci; 39 of them show genome-wide significance in AS-only analyses, whereas the remainder are genome-wide significant in analyses leveraging pleiotrophy with other related diseases (Crohn’s disease (CD), psoriasis, primary sclerosing cholangitis (PSC) and ulcerative colitis (UC))1. Results: AS-associated SNPs are disproportionately found in regions bearing epigenetic marks indicating transcriptional activity found in immune cell types including monocytes, CD4+ and CD8+ T cells, NK cells, regulatory T cells, and B cells. Gene expression studies showed enrichment of AS associated loci in genes specifically expressed in monocytes and NK cells while protein expression study shows protein products of AS associated loci were significantly enriched in CD8+ T cells. Epigenetic analyses also showed evidence that AS-associated signals operate in gut cell types including in mucosa from the small intestine, sigmoid colon and rectum. These findings particularly relate to pleiotropic loci also associated with IBD, psoriasis, and PSC. Conclusion: These findings highlight the role of key immune cell types in the mechanism by which genetic associations with AS drive the disease, as well as providing further evidence for the involvement of the gut in the pathogenesis of AS. 1Ellinghaus D. at al, Nature Genetics 201

    The what and where of adding channel noise to the Hodgkin-Huxley equations

    Get PDF
    One of the most celebrated successes in computational biology is the Hodgkin-Huxley framework for modeling electrically active cells. This framework, expressed through a set of differential equations, synthesizes the impact of ionic currents on a cell's voltage -- and the highly nonlinear impact of that voltage back on the currents themselves -- into the rapid push and pull of the action potential. Latter studies confirmed that these cellular dynamics are orchestrated by individual ion channels, whose conformational changes regulate the conductance of each ionic current. Thus, kinetic equations familiar from physical chemistry are the natural setting for describing conductances; for small-to-moderate numbers of channels, these will predict fluctuations in conductances and stochasticity in the resulting action potentials. At first glance, the kinetic equations provide a far more complex (and higher-dimensional) description than the original Hodgkin-Huxley equations. This has prompted more than a decade of efforts to capture channel fluctuations with noise terms added to the Hodgkin-Huxley equations. Many of these approaches, while intuitively appealing, produce quantitative errors when compared to kinetic equations; others, as only very recently demonstrated, are both accurate and relatively simple. We review what works, what doesn't, and why, seeking to build a bridge to well-established results for the deterministic Hodgkin-Huxley equations. As such, we hope that this review will speed emerging studies of how channel noise modulates electrophysiological dynamics and function. We supply user-friendly Matlab simulation code of these stochastic versions of the Hodgkin-Huxley equations on the ModelDB website (accession number 138950) and http://www.amath.washington.edu/~etsb/tutorials.html.Comment: 14 pages, 3 figures, review articl

    Sharing Data for Public Health Research by Members of an International Online Diabetes Social Network

    Get PDF
    Background: Surveillance and response to diabetes may be accelerated through engaging online diabetes social networks (SNs) in consented research. We tested the willingness of an online diabetes community to share data for public health research by providing members with a privacy-preserving social networking software application for rapid temporal-geographic surveillance of glycemic control. Methods and Findings: SN-mediated collection of cross-sectional, member-reported data from an international online diabetes SN entered into a software applicaction we made available in a “Facebook-like” environment to enable reporting, charting and optional sharing of recent hemoglobin A1c values through a geographic display. Self-enrollment by 17% (n = 1,136) of n = 6,500 active members representing 32 countries and 50 US states. Data were current with 83.1% of most recent A1c values reported obtained within the past 90 days. Sharing was high with 81.4% of users permitting data donation to the community display. 34.1% of users also displayed their A1cs on their SN profile page. Users selecting the most permissive sharing options had a lower average A1c (6.8%) than users not sharing with the community (7.1%, p = .038). 95% of users permitted re-contact. Unadjusted aggregate A1c reported by US users closely resembled aggregate 2007–2008 NHANES estimates (respectively, 6.9% and 6.9%, p = 0.85). Conclusions: Success within an early adopter community demonstrates that online SNs may comprise efficient platforms for bidirectional communication with and data acquisition from disease populations. Advancing this model for cohort and translational science and for use as a complementary surveillance approach will require understanding of inherent selection and publication (sharing) biases in the data and a technology model that supports autonomy, anonymity and privacy.Centers for Disease Control and Prevention (U.S.) (P01HK000088-01)Centers for Disease Control and Prevention (U.S.) (P01HK000016 )National Institute of Alcohol Abuse and Alcoholism (U.S.) (R21 AA016638-01A1)National Center for Research Resources (U.S.) (1U54RR025224-01)Children's Hospital (Boston, Mass.) (Program for Patient Safety and Quality

    US public opinion regarding proposed limits on resident physician work hours

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In both Europe and the US, resident physician work hour reduction has been a source of controversy within academic medicine. In 2008, the Institute of Medicine (IOM) recommended a reduction in resident physician work hours. We sought to assess the American public perspective on this issue.</p> <p>Methods</p> <p>We conducted a national survey of 1,200 representative members of the public via random digit telephone dialing in order to describe US public opinion on resident physician work hour regulation, particularly with reference to the IOM recommendations.</p> <p>Results</p> <p>Respondents estimated that resident physicians currently work 12.9-h shifts (95% CI 12.5 to 13.3 h) and 58.3-h work weeks (95% CI 57.3 to 59.3 h). They believed the maximum shift duration should be 10.9 h (95% CI 10.6 to 11.3 h) and the maximum work week should be 50 h (95% CI 49.4 to 50.8 h), with 1% approving of shifts lasting >24 h (95% CI 0.6% to 2%). A total of 81% (95% CI 79% to 84%) believed reducing resident physician work hours would be very or somewhat effective in reducing medical errors, and 68% (95% CI 65% to 71%) favored the IOM proposal that resident physicians not work more than 16 h over an alternative IOM proposal permitting 30-h shifts with ≥5 h protected sleep time. In all, 81% believed patients should be informed if a treating resident physician had been working for >24 h and 80% (95% CI 78% to 83%) would then want a different doctor.</p> <p>Conclusions</p> <p>The American public overwhelmingly favors discontinuation of the 30-h shifts without protected sleep routinely worked by US resident physicians and strongly supports implementation of restrictions on resident physician work hours that are as strict, or stricter, than those proposed by the IOM. Strong support exists to restrict resident physicians' work to 16 or fewer consecutive hours, similar to current limits in New Zealand, the UK and the rest of Europe.</p

    Living with foot and ankle disorders in rheumatic and musculoskeletal diseases: A systematic review of qualitative studies to inform the work of the OMERACT Foot and Ankle Working Group

    Get PDF
    Objectives This study aimed to determine outcome domains of importance to patients living with foot and ankle disorders in rheumatic and musculoskeletal diseases (RMDs), by exploring the symptoms and impact of these disorders reported in existing qualitative studies. Methods Six databases were searched from inception to March 2022. Studies were included if they used qualitative interview or focus group methods, were published in English, and involved participants living with RMDs (inflammatory arthritis, osteoarthritis, crystal arthropathies, connective tissue diseases, and musculoskeletal conditions in the absence of systemic disease) who had experienced foot and ankle problems. Quality was assessed using the Critical Appraisal Skills Programme qualitative tool and confidence in the findings was assessed using the Grading of Recommendations Assessment, Development and Evaluation Confidence in the Evidence from Reviews of Qualitative research (GRADE-CERQual) approach. All data from the results section of included studies were extracted, coded and synthesised to develop themes. Results Of 1,443 records screened, 34 studies were included, with a total of 503 participants. Studies included participants with rheumatoid arthritis (n = 18), osteoarthritis (n = 5), gout (n = 3), psoriatic arthritis (n = 1), lupus (n = 1), posterior tibial tendon dysfunction (n = 1), plantar heel pain (n = 1), Achilles tendonitis (n = 1), and a mixed population (n = 3), who live with foot and ankle disorders. Seven descriptive themes were generated from the thematic synthesis: pain, change in appearance, activity limitations, social isolation, work disruption, financial burden and emotional impact. Descriptive themes were inductively analysed further to construct analytical themes relating to potential outcome domains of importance to patients. Foot or ankle pain was the predominant symptom experienced by patients across all RMDs explored in this review. Based on grading of the evidence, we had moderate confidence that most of the review findings represented the experiences of patients with foot and ankle disorders in RMDs. Conclusions Findings indicate that foot and ankle disorders impact on multiple areas of patients’ lives, and patients’ experiences are similar regardless of the RMD. This study will inform the development of a core domain set for future foot and ankle research and are also useful for clinicians, helping to focus clinical appointments and measurement of outcomes within clinical practice

    Decreased CD90 expression in human mesenchymal stem cells by applying mechanical stimulation

    Get PDF
    BACKGROUND: Mesenchymal stem cells (MSC) are multipotent cells which can differentiate along osteogenic, chondrogenic, and adipogenic lineages. The present study was designed to investigate the influence of mechanical force as a specific physiological stress on the differentiation of (MSC) to osteoblast-like cells. METHODS: Human MSC were cultured in osteoinductive medium with or without cyclic uniaxial mechanical stimulation (2000 μstrain, 200 cycles per day, 1 Hz). Cultured cells were analysed for expression of collagen type I, osteocalcin, osteonectin, and CD90. To evaluate the biomineral formation the content of bound calcium in the cultures was determined. RESULTS: After 14 days in culture immunfluorescence staining revealed enhancement of collagen type I and osteonectin expression in response to mechanical stimulation. In contrast, mechanically stimulated cultures stained negative for CD90. In stimulated and unstimulated cultures an increase in the calcium content over time was observed. After 21 days in culture the calcium content in mechanical stimulated cultures was significantly higher compared to unstimulated control cultures. CONCLUSION: These results demonstrate the influence of mechanical force on the differentiation of human MSC into osteoblast-like cells in vitro. While significant enhancement of the biomineral formation by mechanical stimulation is not detected before 21 days, effects on the extracellular matrix became already obvious after 14 days. The decrease of CD90 expression in mechanically stimulated cultures compared to unstimulated control cultures suggests that CD90 is only transiently expressed expression during the differentiation of MSC to osteoblast-like cells in culture
    corecore