78 research outputs found

    Negative responses of highland pines to anthropogenic activities in inland Spain: a palaeoecological perspective

    Get PDF
    Palaeoecological evidence indicates that highland pines were dominant in extensive areas of the mountains of Central and Northern Iberia during the first half of the Holocene. However, following several millennia of anthropogenic pressure, their natural ranges are now severely reduced. Although pines have been frequently viewed as first-stage successional species responding positively to human disturbance, some recent palaeobotanical work has proposed fire disturbance and human deforestation as the main drivers of this vegetation turnover. To assess the strength of the evidence for this hypothesis and to identify other possible explanations for this scenario, we review the available information on past vegetation change in the mountains of northern inland Iberia. We have chosen data from several sites that offer good chronological control, including palynological records with microscopic charcoal data and sites with plant macro- and megafossil occurrence. We conclude that although the available long-term data are still fragmentary and that new methods are needed for a better understanding of the ecological history of Iberia, fire events and human activities (probably modulated by climate) have triggered the pine demise at different locations and different temporal scales. In addition, all palaeoxylological, palynological and charcoal results obtained so far are fully compatible with a rapid human-induced ecological change that could have caused a range contraction of highland pines in western Iberia

    Effect of salinity on the biosynthesis of n-3 long-chain polyunsaturated fatty acids in silverside Chirostoma estor

    Get PDF
    The genus Chirostoma (silversides) belongs to the family Atherinopsidae, which contains around 150 species, most of which are marine. However, Mexican silverside (Chirostoma estor) is one of the few representatives of freshwater atherinopsids and is only found in some lakes of the Mexican Central Plateau. However, studies have shown that C. estor has improved survival, growth and development when cultured in water conditions with increased salinity. In addition, C. estor displays an unusual fatty acid composition for a freshwater fish with high docosahexaenoic acid (DHA) : eicosapentaenoic acid (EPA) ratios. Freshwater and marine fish species display very different essential fatty acid metabolism and requirements and so the present study investigated long-chain polyunsaturated fatty acid (LC-PUFA) biosynthesis to determine the capacity of C. estor for endogenous production of EPA and DHA, and the effect that salinity has on these pathways. Briefly, C. estor were maintained at three salinities (0, 5 and 15 ppt) and the metabolism of 14C-labelled 18:3n-3 determined in isolated hepatocyte and enterocyte cells. The results showed that C. estor has the capacity for endogenous biosynthesis of LC-PUFA from 18-carbon fatty acid precursors, but that the pathway was essentially only active in saline conditions with virtually no activity in cells isolated from fish grown in freshwater. The activity of the LCPUFA biosynthesis pathway was also higher in cells isolated from fish at 15 ppt compared to fish at 5 ppt, The pathway was around 5-fold higher in hepatocytes compared to enterocytes, although the majority of 18:3n-3 was converted to 18:4n-3 and 20:4n-3 in hepatocytes whereas the proportions of 18:3n-3 converted to EPA and DHA were higher in enterocytes. The data were consistent with the hypothesis that conversion of EPA to DHA could contribute, at least in part, to the generally high DHA:EPA ratios observed in the tissue lipids of C. estor

    Methanethiol-dependent dimethylsulfide production in soil environments

    Get PDF
    Dimethylsulfide (DMS) is an environmentally important trace gas with roles in sulfur cycling, signalling to higher organisms and in atmospheric chemistry. DMS is believed to be predominantly produced in marine environments via microbial degradation of the osmolyte dimethylsulfoniopropionate (DMSP). However, significant amounts of DMS are also generated from terrestrial environments, for example, peat bogs can emit ~6 μmol DMS m−2 per day, likely via the methylation of methanethiol (MeSH). A methyltransferase enzyme termed ‘MddA’, which catalyses the methylation of MeSH, generating DMS, in a wide range of bacteria and some cyanobacteria, may mediate this process, as the mddA gene is abundant in terrestrial metagenomes. This is the first study investigating the functionality of MeSH-dependent DMS production (Mdd) in a wide range of aerobic environments. All soils and marine sediment samples tested produced DMS when incubated with MeSH. Cultivation-dependent and cultivation-independent methods were used to assess microbial community changes in response to MeSH addition in a grassland soil where 35.9% of the bacteria were predicted to contain mddA. Bacteria of the genus Methylotenera were enriched in the presence of MeSH. Furthermore, many novel Mdd+ bacterial strains were isolated. Despite the abundance of mddA in the grassland soil, the Mdd pathway may not be a significant source of DMS in this environment as MeSH addition was required to detect DMS at only very low conversion rates

    Postnatal Proteasome Inhibition Induces Neurodegeneration and Cognitive Deficiencies in Adult Mice: A New Model of Neurodevelopment Syndrome

    Get PDF
    Defects in the ubiquitin-proteasome system have been related to aging and the development of neurodegenerative disease, although the effects of deficient proteasome activity during early postnatal development are poorly understood. Accordingly, we have assessed how proteasome dysfunction during early postnatal development, induced by administering proteasome inhibitors daily during the first 10 days of life, affects the behaviour of adult mice. We found that this regime of exposure to the proteasome inhibitors MG132 or lactacystin did not produce significant behavioural or morphological changes in the first 15 days of life. However, towards the end of the treatment with proteasome inhibitors, there was a loss of mitochondrial markers and activity, and an increase in DNA oxidation. On reaching adulthood, the memory of mice that were injected with proteasome inhibitors postnatally was impaired in hippocampal and amygdala-dependent tasks, and they suffered motor dysfunction and imbalance. These behavioural deficiencies were correlated with neuronal loss in the hippocampus, amygdala and brainstem, and with diminished adult neurogenesis. Accordingly, impairing proteasome activity at early postnatal ages appears to cause morphological and behavioural alterations in adult mice that resemble those associated with certain neurodegenerative diseases and/or syndromes of mental retardation

    Localization and broadband follow-up of the gravitational-wave transient GW150914

    Get PDF
    A gravitational-wave transient was identified in data recorded by the Advanced LIGO detectors on 2015 September 14. The event candidate, initially designated G184098 and later given the name GW150914, is described in detail elsewhere. By prior arrangement, preliminary estimates of the time, significance, and sky location of the event were shared with 63 teams of observers covering radio, optical, near-infrared, X-ray, and gamma-ray wavelengths with ground- and space-based facilities. In this Letter we describe the low-latency analysis of the gravitational wave data and present the sky localization of the first observed compact binary merger. We summarize the follow-up observations reported by 25 teams via private Gamma-ray Coordinates Network Circulars, giving an overview of the participating facilities, the gravitational wave sky localization coverage, the timeline and depth of the observations. As this event turned out to be a binary black hole merger, there is little expectation of a detectable electromagnetic signature. Nevertheless, this first broadband campaign to search for a counterpart of an Advanced LIGO source represents a milestone and highlights the broad capabilities of the transient astronomy community and the observing strategies that have been developed to pursue neutron star binary merger events. Detailed investigations of the electromagnetic data and results of the electromagnetic follow-up campaign will be disseminated in the papers of the individual teams
    corecore