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Abstract 22	  

 23	  

The genus Chirostoma (silversides) belongs to the family Atherinopsidae, which 24	  

contains around 150 species, most of which are marine. However, Mexican silverside 25	  

(Chirostoma estor) is one of the few representatives of freshwater atherinopsids and 26	  

is only found in some lakes of the Mexican Central Plateau. However, studies have 27	  

shown that C. estor has improved survival, growth and development when cultured in 28	  

water conditions with increased salinity. In addition, C. estor displays an unusual fatty 29	  

acid composition for a freshwater fish with high docosahexaenoic acid (DHA) : 30	  

eicosapentaenoic acid (EPA) ratios. Freshwater and marine fish species display very 31	  

different essential fatty acid metabolism and requirements and so the present study 32	  

investigated long-chain polyunsaturated fatty acid (LC-PUFA) biosynthesis to 33	  

determine the capacity of C. estor for endogenous production of EPA and DHA, and 34	  

the effect that salinity has on these pathways. Briefly, C. estor were maintained at 35	  

three salinities (0, 5 and 15 ppt) and the metabolism of 14C-labelled 18:3n-3 36	  

determined in isolated hepatocyte and enterocyte cells. The results showed that C. 37	  

estor has the capacity for endogenous biosynthesis of LC-PUFA from 18-carbon fatty 38	  

acid precursors, but that the pathway was essentially only active in saline conditions 39	  

with virtually no activity in cells isolated from fish grown in freshwater. The activity of 40	  

the LC-PUFA biosynthesis pathway was also higher in cells isolated from fish at 15 41	  

ppt compared to fish at 5 ppt, The pathway was around 5-fold higher in hepatocytes 42	  

compared to enterocytes, although the majority of 18:3n-3 was converted to 18:4n-3 43	  

and 20:4n-3 in hepatocytes whereas the proportions of 18:3n-3 converted to EPA 44	  

and DHA were higher in enterocytes. The data were consistent with the hypothesis 45	  
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that conversion of EPA to DHA could contribute, at least in part, to the generally high 46	  

DHA:EPA ratios observed in the tissue lipids of C. estor. 47	  

48	  
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Introduction 48	  

 49	  

Mexican silverside (Chirostoma estor, also reported as Menidia estor) from lake 50	  

Pátzcuaro is one of the most valued freshwater fish in Mexico. The species, locally 51	  

known as “pez blanco”, has greatly influenced the cultural environment and economy 52	  

of the native people of the region. The species is now endangered because of a 53	  

range of factors including over-fishing, environmental degradation of the lake and 54	  

introduction of exotic species (Martínez-Palacios et al. 2008).  However, silverside is 55	  

a species with high potential for aquaculture commanding a good price in regional 56	  

markets ($40-80 USD kg-1) (Martínez-Palacios et al. 2008). Recently, there have 57	  

been efforts to preserve the species through aquaculture techniques (Martínez-58	  

Palacios et al. 2002, 2003, 2004, 2006, 2007). The genus Chirostoma (silversides) 59	  

belongs to the family Atherinopsidae, which contains around 150 species, most of 60	  

which are marine. However, C. estor is one of the few representatives of freshwater 61	  

atherinopsids and is only found in some freshwater lakes of the Mexican Central 62	  

Plateau. Therefore, although silverside is a freshwater species, it shares many 63	  

characteristics in common with marine Atherinopsids because of their common 64	  

ancestry (Barbour 1973). Thus, aquaculture of Mexican silverside C. estor involves 65	  

the transfer of the fish to different salinities over the whole cycle of production from 66	  

incubation of the eggs to juvenile development. Specifically, silverside has better 67	  

growth and survival when cultured in saline conditions (Martínez-Palacios et al. 68	  

2004). 69	  

. C. estor is also considered to be a carnivorous species and so their essential fatty 70	  

acid (EFA) requirements were expected to be more similar to that of a marine 71	  

carnivorous species than that of a typical freshwater fish (Martínez-Palacios et al. 72	  
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2008). It has been reported that most freshwater fish studied, in contrast to the 73	  

marine species studied, have the ability to elongate and desaturate 18-carbon 74	  

polyunsaturated fatty acids (PUFA) (18:2n-6, linoleic acid/LOA and 18:3n-3 α-75	  

linolenic acid/ALA) to long-chain PUFA (LC-PUFA) of 20 carbons (20:4n-6, 76	  

arachidonic acid/ARA and 20:5n-3, eicosapentanoic acid/EPA) and 22 carbons 77	  

(22:6n-3, docosahexaenoic acid/DHA) (Tocher 2010). Thus, it is generally assumed 78	  

that LOA and ALA can satisfy EFA requirements for freshwater species but ARA, 79	  

EPA and DHA are the required EFA for marine species (Sargent et al. 1995a). 80	  

However, the feeding habits of fish may also be determinants of precise EFA 81	  

requirements: carnivorous fish obtain the biologically active LC-PUFA directly from 82	  

their diet and consequently they now have only a low ability to desaturate and 83	  

elongate 18-carbon fatty acids whereas herbivorous fish have higher levels of C18 84	  

PUFA and lower LC-PUFA in their diet and so have retained the ability to convert C18 85	  

PUFA to LC-PUFA (Sargent et al. 1999). If the assertion that C. estor may have 86	  

characteristics of a marine species is correct, then ARA, EPA and DHA would need 87	  

to be included in the diet to satisfy their nutritional requirements.  88	  

    There is scarce information of the lipid and fatty acid compositions and metabolism 89	  

in C. estor (Palacios et al. 2007).  Wild fish contained high levels of DHA (20 - 32% of 90	  

total fatty acids) but surprisingly low levels of EPA (1 - 3%) in contrast with the fatty 91	  

acid profile found in samples of zooplankton, its natural diet (12% DHA, 13% EPA) 92	  

(Martínez-Palacios et al. 2003). There are two possible explanations for these 93	  

findings; firstly, that C. estor selectively accumulates DHA preferentially over other 94	  

fatty acids such as EPA depending on its own physiological requirements, or 95	  

secondly, that this species has the capacity to convert EPA and/or other n-3 series 96	  

fatty acids to DHA (Tocher 2003). The second explanation is also supported by the 97	  
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presence of DHA in larvae fed rotifers with a low DHA / high ALA composition 98	  

(Martínez-Palacios et al. 2006).  99	  

     Salinity has been shown to affect lipid and fatty acid composition in salmonids 100	  

although many effects occurred in advance of seawater transfer during parr-smolt 101	  

transformation (Bendiksen et al. 2003; Peng et al. 2003). It was also shown that the 102	  

activity of the LC-PUFA synthesis pathway was regulated by environmental cues in 103	  

Atlantic salmon (Salmo salar) and peaked around seawater transfer and was 104	  

considerably lower during the seawater phase (Bell et al. 1997; Tocher et al. 2000). 105	  

These changes in activity reflected changes in the expression of fatty acyl 106	  

desaturase genes in freshwater and seawater phases (Zheng et al. 2005).  There are 107	  

also several studies reporting fatty acid compositions in fish reared at different 108	  

salinities (Cordier et al. 2002; Kheriji et al. 2003; Haliloglu et al. 2004; Martinez-109	  

Alvarez et al 2005; Dantagnan et al. 2007; Navarro et al. 2009; Xu et al. 2010; Hunt 110	  

et al., 2011). Results are not consistent with increased associated with both reduced 111	  

(Ciordier et al. 2002; Kheriji et al. 2003) and increased (Xu et al. 2010; Hunt et al. 112	  

2011) levels of LC-PUFA including EPA and DHA. In contrast, the effects of salinity 113	  

on lipid and fatty acid biochemistry and metabolism have been little studied in non-114	  

salmonid fish although the modulation of Δ6 fatty acyl desaturase in teleosts was 115	  

recently reviewed, with the effects of salinity again being variable (Vagner and 116	  

Santigosa 2011). However, the expression of Δ6 desaturase was higher in liver of 117	  

rabbitfish (Siganus canaliculatus) and red sea bream (Pagrus major) reared at lower 118	  

salinity (10-15 ppt) compared to fish reared at higher salinity (32-33 ppt) (Li et al 119	  

2008; Sarker et al 2011). 120	  

     The present study aims to investigate the two issues of salinity preference and 121	  

LC-PUFA metabolism in C.estor to determine if there is a relationship between them. 122	  
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The basic hypothesis investigated was that LC-PUFA synthesis in C. estor will be 123	  

influenced by ambient salinity, and that the improved performance at increased 124	  

salinity will be related to this interaction between salinity and LC-PUFA biosynthesis.  125	  

The specific objectives were to determine the pathways and activities of LC-PUFA 126	  

biosynthesis in C. estor in order to elucidate potential mechanisms underpinning its 127	  

uncommon fatty acid profile and if the pathway reflects its marine ancestry, and to 128	  

determine if salinity affects the biosynthesis of LC-PUFA in a way that can explain 129	  

the apparent preference of C. estor for saline conditions  (Martínez-Palacios et al. 130	  

2004). 131	  

 132	  

Materials and methods 133	  

Experimental fish 134	  

 135	  

Forty-five juvenile silverside (Chirostoma estor) of average initial weight around 50g 136	  

were obtained from a research production plant (UMSNH, Michoacan, Mexico). Fish 137	  

were maintained in glass-fiber tanks of 40cm high x 60cm diameter and 100L 138	  

capacity with constant aeration and temperature control (25± 0.4oC). All the 139	  

experimental units were maintained in a 12:12 dark:light photoperiod. All fish were 140	  

fed a standard commercial pellet feed (see Palacios et al. 2007), and every three 141	  

days tanks were siphoned and 30% of the water was renewed in order to maintain 142	  

high water quality with dissolved oxygen, nitrites, nitrates, pH, and total ammonia 143	  

monitored at 3-day intervals. The experimental design consisted of three salinity 144	  

treatments: freshwater (0 ppt; i.e < 0.05), 5 ppt and 15 ppt of salinity, each in 145	  

triplicate with 5 fish per tank (15 per treatment). Different salinities were obtained by 146	  

using artificial seawater (Instant Ocean Synthetic sea salt, Aquarium Systems) and 147	  
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UV filtered ground water. Fish were fed a diet consisting of Artemia franciscana and 148	  

a commercial feed (1:3) four times per day over 15 days prior to experimentation.   149	  

 150	  

Preparation of isolated hepatocytes and enterocytes 151	  

 152	  

With some modifications, the method for the preparation of isolated hepatocytes and 153	  

enterocytes established for salmonids was followed (Bell et al. 1997; Tocher et al. 154	  

1997, 2002). Briefly, six fish from each salinity treatment (two per tank) were 155	  

sacrificed with an overdose of benzocaine (50-60mg L-1) to minimize stress (Ross et 156	  

al. 2007) and the livers and intestinal tracts dissected immediately. The livers and 157	  

intestines of two fish (i.e. per tank) were pooled for each sample so that there were 3 158	  

liver and 3 intestinal samples per treatment. The gall bladder was removed carefully 159	  

from the liver, the main blood vessels trimmed, and the liver perfused via the hepatic 160	  

vein with solution A (calcium and magnesium-free Hanks balanced salt solution 161	  

(HBSS) containing 10 mM HEPES) to clear blood from the tissue. The liver was 162	  

chopped finely and about 0.5 g was taken and incubated with shaking in 20 ml of 163	  

solution A containing 0.1% (w/v) collagenase in a temperature controlled incubator at 164	  

25 oC for 45 min. Digested liver tissue was filtered through 100 µm nylon gauze and 165	  

the cells collected by centrifugation at 300 x g for 2 min. The cell pellet was washed 166	  

with 20 ml of solution A containing 1% w/v fatty acid-free bovine serum albumin 167	  

(FAF-BSA) and re-centrifuged. The washing was repeated with a further 20 ml of 168	  

solution A without FAF-BSA. The hepatocytes were resuspended in 10 ml of Medium 169	  

199 containing 10 mM HEPES. One hundred µl of cell suspension was mixed with 170	  

400 µl of the vital stain, Trypan Blue, and hepatocytes counted and viability assessed 171	  

using a haemocytometer.  172	  
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     With relatively minor modification, the above method was used to isolate 173	  

enterocyte-enriched preparations from C. estor intestine as described previously for 174	  

caecal enterocytes from salmon (Fonseca-Madrigal et al. 2006). Briefly, entire 175	  

intestinal tracts were dissected, cleaned of adhering adipose tissue, and luminal 176	  

contents rinsed away with solution A before being chopped finely and incubated with 177	  

0.1% (w/v) collagenase as above. The digested intestinal tissue was filtered through 178	  

100 µm nylon gauze and the cells collected, washed, resuspended in medium (as 179	  

above), and viability checked as for hepatocytes. The enriched enterocyte 180	  

preparation was predominantly enterocytes although some secretory cells were also 181	  

present.  182	  

Viability of both isolated cell preparations was > 95% at isolation and decreased by 183	  

less than 5% over the period of the incubation. One hundred µl of the hepatocyte and 184	  

enterocyte suspensions were retained for protein determination according to the 185	  

method of Lowry et al. (1951) after incubation with 0.4 ml of 0.25% (w/v) SDS/1M 186	  

NaOH for 45 min at 60 oC. 187	  

 188	  

Assay of hepatocyte and enterocyte fatty acyl desaturation/elongation activities  189	  

 190	  

Six ml of each hepatocyte or enterocyte suspension were dispensed into 25 cm2 191	  

tissue culture flasks and incubated at 20oC for 2h with 0.3 µCi (~ 1 µM) [1-14C]18:3n-192	  

3 or [1-14C]20:5n-3, added as complexes with FAF-BSA in phosphate buffered saline 193	  

as described previously (Ghioni et al. 1997). After incubation, the cell suspensions 194	  

were transferred to glass conical test tubes and centrifuged at 500 x g for 2 min. The 195	  

supernatants were discarded and the cell pellets washed with 5 ml of ice-cold 196	  

HBSS/FAF-BSA. The supernatant was carefully discarded and total lipid extracted 197	  
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from the cell pellets using ice-cold chloroform/methanol (2:1, v/v) containing 0.01% 198	  

(w/v) BHT as described in detail previously (Tocher and Harvie 1988). Fatty acid 199	  

methyl esters (FAME) were prepared from total lipid by acid-catalyzed 200	  

transesterification using 2 ml of 1% H2SO4 in methanol plus 1 ml toluene as 201	  

described by Christie (1993), and FAME extracted and purified as described 202	  

previously (Tocher and Harvie 1988). The methyl esters were redissolved in 100 µl 203	  

isohexane containing 0.01% BHT and applied as 2.5 cm streaks to TLC plates 204	  

impregnated by spraying with 2 g silver nitrate in 20 ml acetonitrile and pre-activated 205	  

at 110oC for 30 min.  Plates were fully developed in toluene/acetonitrile (95:5, v/v) 206	  

(Wilson and Sargent 1992) and autoradiography performed with Kodak MR2 film for 207	  

6 days at room temperature. Areas of silica containing individual PUFA were scraped 208	  

into scintillation mini-vials containing 2.5 ml of scintillation fluid (Ultima Gold, Perkin 209	  

Elmer, Monterrey, Mexico) and radioactivity determined in a scintillation ß-counter 210	  

(Beckman LS Analyzer, Beckman Coulter de Mexico SA, Mexico City).  211	  

 212	  

Statistical analysis 213	  

 214	  

All the data are presented as means ± SD (n = 3) and all statistical analyses were 215	  

performed using S-Plus 2000 Professional Release 2 (MathSoft, Inc., Cambridge, 216	  

MA, USA). The effects of salinity on LC-PUFA synthesis was analyzed by one-way 217	  

ANOVA followed, where appropriate, by Tukey’s post-test to determine significant 218	  

differences between individual treatments (Zar 1999). 219	  

 220	  

Materials 221	  
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[1-14C]18:3n-3 and [1-14C]20:5n-3 (50-55 mCi/mmol) were obtained from American 222	  

Radiolabeled Chemicals Inc. (St. Louis, MO, USA). HBSS, Medium 199, HEPES 223	  

buffer, collagenase (type IV), FAF-BSA, BHT, silver nitrate and all solvents (HPLC 224	  

grade) were obtained from Sigma Chemical Co. (St. Louis, MO, USA.). Thin-layer 225	  

chromatography (TLC) plates, precoated with silica gel 60 (without fluorescent 226	  

indicator) were obtained from Merck (Whitehouse Station, NJ, USA). 227	  

 228	  

Results 229	  

 230	  

Desaturation and elongation of ALA, [1-14C]18:3n-3 231	  

 232	  

Irrespective of tissue, activity of the LC-PUFA synthesis pathway from 18:3n-3 was 233	  

very low in fish maintained in freshwater. Increasing salinity resulted in significantly 234	  

increased LC-PUFA synthesis in both hepatocytes and enterocytes as measured by 235	  

the recovery of radioactivity in the summed desaturated products (18:4, 20:4, 20:5, 236	  

22:5 and 22:6) of [1-14C]18:3n-3 (Fig.1). In both cell types, the rate of LC-PUFA 237	  

synthesis was highest in fish cultured at 15 ppt salinity, with rates of 0.41 ± 0.10 and 238	  

0.09 ± 0.04 pmol/h/mg protein in hepatocytes and enterocytes, respectively. These 239	  

values were 50- and 5-fold higher in hepatocytes and enterocytes, respectively, than 240	  

the activity observed in fish in freshwater. In both tissues, LC-PUFA synthesis at the 241	  

5 ppt salinity was intermediate between the activities in freshwater and 15 ppt salinity 242	  

with values of 0.13 ± 0.01 and 0.06 ± 0.01 pmol/h/mg protein in hepatoctes and 243	  

enterocytes, respectively. The LC-PUFA synthesis activity was 2.3- and 4.6-fold 244	  

higher in hepatocytes than in enterocytes at 5 and 15 ppt, respectively (Fig.1). The 245	  

rank order for recovery of radioactivity in desaturated products of 18:3n-3 was 18:4 246	  
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>20:4 >22:6 >22:5 > 20:5 in hepatocytes (Fig. 2) whereas in enterocytes it was 20:4 247	  

>20:5 > 22:6 > 22:5 > 18:4 (Fig 3). In hepatocytes, recovery of radioactivity in DHA 248	  

exceeded that recovered in EPA, with the recovery of radioactivity in EPA and DHA 249	  

combined amounting to around 25% of the total radioactivity recovered (Fig. 2). In 250	  

contrast around 50% of total radioactivity recovered in enterocytes was as EPA and 251	  

DHA combined. Furthermore, in enterocytes, the recovery of radioactivity in EPA 252	  

increased, and that in DHA decreased, with increasing salinity (Fig. 3). 253	  

 254	  

Desaturation and elongation of EPA, [1-14C]20:5n-3 255	  

 256	  

As with [1-14C]18:3n-3, desaturation/elongation activity towards EPA in tissues from 257	  

fish maintained in freshwater was very low and increasing salinity significantly 258	  

increased desaturation/elongation activity in both hepatocytes and enterocytes as 259	  

measured by the recovery of radioactivity in the summed products (22:5 and 22:6) of 260	  

[1-14C]20:5n-3 metabolism (Fig. 4). However, in contrast to LC-PUFA synthesis from 261	  

[1-14C]18:3n-3, the activity in hepatocytes was similar in fish at both 5 and 15 ppt 262	  

salinity with values of 0.37 ± 0.16 and 0.36 ± 0.15 pmol/h/mg protein, respectively. In 263	  

enterocytes, highest activity was obtained in fish at 5 ppt salinity, with a value of 0.13 264	  

± 0.01 pmol/h/mg protein compared to 0.05 ± 0.02 in fish reared at 15 ppt  (Fig. 4). 265	  

Similar to the data obtained with [1-14C]18:3n-3, the LC-PUFA synthesis activity from 266	  

[1-14C]20:5n-3 was 2.9- and 7.0-fold higher in hepatocytes than in enterocytes from 267	  

fish reared at 5 ppt and 15 ppt, respectively (Fig.4). There was also a significant 268	  

difference in the products of [1-14C]20:5n-3 metabolism between hepatocytes and 269	  

enterocytes irrespective of treatment. The rank order for recovery of radioactivity in 270	  

products of 20:5n-3 metabolism was 22:6 >22:5 in hepatocytes, with the recovery of 271	  
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radioactivity in DHA increasing with salinity with percentages of 57%, 65% and 78% 272	  

at 0, 5 and 15 ppt, respectively (Fig. 5). In enterocytes, the recovery of radioactivity in 273	  

22:5 exceeded the recovery in 22:6, with approximately 25%, 10% and 37% of 274	  

radioactivity recovered in DHA at 0, 5 and 15 ppt salinity, respectively (Fig 6). 275	  

 276	  

Discussion 277	  

 278	  

The primary objectives of the present work were to establish the extent and activity of 279	  

the LC-PUFA synthesis pathway in enterocytes and hepatocytes of C. estor and, 280	  

furthermore, to determine whether these activities were influenced by salinity. The 281	  

results demonstrated that both hepatocytes and enterocytes of C. estor displayed 282	  

physiologically relevant activities of LC-PUFA synthesis from ALA, particularly in 283	  

saline conditions. Thus, the values in hepatocytes and enterocytes from C. estor at 284	  

15 ppt salinity (0.41 and 0.09 pmol/h/mg protein, respectively) were lower than those 285	  

obtained in Atlantic salmon hepatocytes and enterocytes (0.9 and 1.2 pmol.h/mg 286	  

protein, respectively) (Zheng et al 2005), but higher than those obtained in 287	  

hepatocytes from the marine teleost Atlantic cod (Gadus morhua) (0.02 pmol/h/mg 288	  

protein) and similar to values from cod enterocytes (0.15 pmol/h/mg protein) (Tocher 289	  

et al. 2006). In addition, interest in the LC-PUFA synthesis pathway in C. estor is 290	  

partly due in its tissue fatty acid composition that, unusually for a freshwater species, 291	  

shows a very high DHA:EPA ratio (Martínez-Palacios et al. 2006).  In marine and 292	  

freshwater fish tissue DHA:EPA ratios are most commonly in the range of 1:1 to 2:1 293	  

although ratios lower than this are also found in some species, particularly in 294	  

Southern oceans (Sargent et al. 1989). In contrast, C. estor has a fatty acid profile 295	  

with a DHA:EPA ratio that can vary from 10:1 to 20:1 (Martínez-Palacios et al. 2006). 296	  
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This is generally unusual, even in marine fish, and very uncommon in freshwater 297	  

species (Ackman 1980). A few marine species show high DHA:EPA ratios, most 298	  

notable tuna species that can display ratios between 4 and 11, depending upon 299	  

tissue and species (Tocher 2003). In tuna the high tissue DHA:EPA ratios appear to 300	  

be due to generally higher DHA levels combined with relatively low EPA levels 301	  

(Tocher 2003).  However, in C. estor, it appears that the main cause of the high 302	  

DHA:EPA ratios is the latter factor, that is, relatively low EPA levels in tissues, rather 303	  

than exceptionally high DHA (Martínez-Palacios et al. 2006). The present study has 304	  

confirmed that enterocytes and, especially, hepatocytes of C. estor demonstrated 305	  

significant DHA synthesis from EPA, particularly in saline conditions. Therefore, the 306	  

data are consistent with the hypothesis that conversion of EPA to DHA, particularly in 307	  

the liver, but also in the intestine, could contribute, at least in part, to the generally 308	  

high DHA:EPA ratios observed in the tissue lipids of C. estor (Martínez-Palacios et 309	  

al. 2006). 310	  

Previously, intestine and pyloric caeca were shown to be tissue sites of substantial 311	  

LC-PUFA biosynthesis in salmonids (Atlantic salmon and trout) (Fonseca-Madrigal et 312	  

al. 2005, 2006), and this is why the capacity of enterocytes in C. estor for LC-PUFA 313	  

production was also investigated in the present study. The present study has 314	  

demonstrated that intestine in C. estor had the capability for LC-PUFA biosynthesis 315	  

but at significantly lower level than liver. The lower capacity of intestine for LC-PUFA 316	  

biosynthesis in C. estor in comparison to salmonids could be related to the feeding 317	  

habits of the species as C. estor is a zooplanktivorous fish with a short intestinal tract 318	  

and agastric digestive system (1:0.7 size of fish:size of intestine) with no pyloric 319	  

caeca (Martínez-Palacios et al. 2006). This is, of course, completely different to the 320	  

digestive tract of carnivorous species such as salmonids, which have a considerably 321	  
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longer digestive system including a stomach and multiple caeca (Olsen and Ringø 322	  

1997). The results therefore suggest that the enterocytes in the much smaller 323	  

intestinal tract in C. estor and planktonivorous fish in general may not express the 324	  

same range of activities for processing absorbed nutrients as carnivorous fish 325	  

species, and may be focused more on the digestive and absorption roles. For 326	  

example, the activity of the LC-PUFA biosynthesis pathway is an order of magnitude 327	  

lower in enterocytes from C. estor compared to enterocytes from Atlantic salmon 328	  

(Zheng et al. 2005).  Hepatocytes from C. estor showed much higher LC-PUFA 329	  

synthesis activity, which is expected due to the liver generally being the most 330	  

important organ in fatty acid and lipid metabolism in most fish species (Henderson 331	  

1996; Grum et al. 2002; Tocher 2003; Fonseca-Madrigal et al. 2005, 2006).  332	  

Studies on the development of C. estor aquaculture showed that this species 333	  

displays improved survival, growth and development when cultured in water 334	  

conditions with increased salinity (Martinez-Palacios et al. 2004). Generally, egg 335	  

fertilization and incubation as well as many physiological processes including lipid 336	  

metabolism are dependent on, or influenced by, salinity (Bœuf and Payan 2001). For 337	  

example, changes in the fatty acid composition of tissue lipids associated with 338	  

changes in salinity have been reported previously in a number of fish species 339	  

including guppy (Poecilia reticulata) (Daikoku et al. 1982), milkfish (Chanos chanos) 340	  

(Borlogan and Benítez 1992) and turbot (Psetta maxima) (Tocher et al. 1994, 1995). 341	  

These adaptations in response to salinity include altered proportions of total 342	  

phospholipids and individual phospholipid classes, as well as changes in fatty acid 343	  

composition including levels of LC-PUFA and n-3/n-6 PUFA ratio. However, the data 344	  

are variable depending upon species and whether low or high salinity is the actual 345	  

challenge for that species. For instance, in marine fish, reduced salinity increased 346	  
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percentages of DHA and ARA in mullet (Mugil cephalus) (Kheriji et al. 2003), but 347	  

reduced proportions of EPA and DHA in Japanese sea bass (Lateolabrax japonicus) 348	  

and European sea bass (Dicentrarchus labrax) (Xu et al. 2010; Hunt et al. 2011).  349	  

In the present study, there was a clear relationship between the salinity of the water 350	  

the fish were maintained and synthesis of LC-PUFA, independent of cell type, with 351	  

higher LC-PUFA synthesis activity in cells of fish cultured in water with higher salinity 352	  

compared to fish cultured in freshwater. However, it is perhaps more appropriate and 353	  

noteworthy to highlight the fact that the activity of the LC-PUFA synthesis pathway 354	  

was very low in freshwater. This was actually the most unusual feature of the 355	  

pathway in C. estor, rather the activities observed at higher salinity. Clearly, there 356	  

was very little activity in freshwater and this was largely unprecedented as all the 357	  

freshwater fish species examined to date have generally shown appreciable LC-358	  

PUFA synthesis activity (Tocher 2010), such that 18:3n-3 and/or 18:2n-6 can satisfy 359	  

their essential fatty acid requirements (NRC 2011).  360	  

The adaptation processes in response to a saline environment are primarily a series 361	  

of physiological changes involved osmoregulation, the regulation of ion balances 362	  

between the external medium and the corporal fluids (Morgan 1997; Laiz-Carrión et 363	  

al. 2004). Many of adaptations depend upon membrane processes and so changes 364	  

in lipid and, especially, fatty acid metabolism can be linked to the capacity of the fish 365	  

to adapt to salinity through changes in lipid and fatty acid compositions of 366	  

membranes that, in turn, affect membrane-associated proteins (receptors, enzymes 367	  

etc). Therefore, the influence of salinity on LC-PUFA production may be related to 368	  

the osmoregulatory response required for adaptation to higher salinity. The effects of 369	  

salinity on fatty acid compositions have been investigated (Tocher et al. 1994, 1995) 370	  

and the effects of salinity on LC-PUFA synthesis in hepatocytes have been indirectly 371	  
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investigated in studies on the process of smoltification in Atlantic salmon (Bell et al. 372	  

1997; Tocher et al. 2000, 2002). In a trial investigating LC-PUFA synthesis in both 373	  

hepatocytes and enterocytes in farmed salmon, a peak of LC-PUFA production 374	  

occurred around the time the fish were transferred from freshwater to seawater, with 375	  

synthetic activity declining rapidly in the seawater phase to minimum levels (Tocher 376	  

et al. 2002). Although the effects of salinity on lipid and fatty acid biochemistry and 377	  

metabolism have been little studied in non-salmonid fish, the expression of Δ6 fatty 378	  

acyl desaturase in liver of the marine teleosts, rabbitfish and red sea bream,  was 379	  

higher in fish maintained at low salinity compared to fish reared at high salinity (Li et 380	  

al 2008; Sarker et al 2011).This association between salinity and LC-PUFA 381	  

biosynthesis observed in fish was one of the factors underpinning the hypothesis 382	  

tested in the present study and the specific objectives were developed in this context. 383	  

However, the precise links between salinity changes, and LC-PUFA synthesis fatty 384	  

acid composition in fish including C. estor require further investigation. 385	  

Irrespective of the precise mechanistic links, the results presented, showing very low 386	  

levels of activity in fish reared in freshwater and increased capacity for LC-PUFA 387	  

synthesis essentially in hepatocytes as salinity increased may be related with the fact 388	  

that this species displays better growth performance and development when cultured 389	  

in saline water. At the most simplistic level, increased capability for endogenous 390	  

synthesis of the biologically and physiologically essential LC-PUFA would be 391	  

potentially beneficial to the fish in comparison to the situation in freshwater where the 392	  

pathways appear almost totally suppressed. Therefore, it is tempting to speculate 393	  

that the differing activity of the LC-PUFA synthesis pathway is an underpinning factor 394	  

on the effect of salinity on growth performance of C. estor. However, it is not so clear 395	  

how the effect of salinity on the activity of LC-PUFA synthesis pathway in C. estor 396	  
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relates to current knowledge of LC-PUFA and environmental salinity or to discuss of 397	  

the possible marine origin of this species. Marine species generally have a reduced 398	  

ability to produce LC-PUFA compared to freshwater species (Tocher 2010). This has 399	  

been explained as a possible evolutionary adaptation to the generally higher levels of 400	  

DHA in the marine environment (Sargent et al. 1995b), and so marine species have 401	  

had less evolutionary pressure to retain the ability to endogenously produce LC-402	  

PUFA; in contrast, freshwater food webs are generally characterized by lower levels 403	  

of DHA (Sargent et al. 1995b) and so evolutionary pressure for endogenous 404	  

production of LC-PUFA has been retained in freshwater species (Tocher 2010). 405	  

Therefore, this hypothesis would suggests it would be more advantageous for C. 406	  

estor to have higher LC-PUFA biosynthesis in freshwater where the supply of EPA 407	  

and, especially, DHA would likely be lower. 408	  

Although the data obtained to date with over 30 species, generally support this 409	  

hypothesis linking LC-PUFA levels and, especially, DHA levels in the different food 410	  

webs to evolutionary pressure for endogenous production of LC-PUFA, there are 411	  

several potential confounding factors including precise feeding habit of different 412	  

species (herbivorous vs. carnivorous/piscivorous) as well as phylogenetic issues. For 413	  

instance, defining fish species simply as marine or freshwater is often not ideal 414	  

considering the large number of euryhaline and diadromous species. Furthermore, 415	  

the effect of feeding habit can also be generalized with the ability for endogenously 416	  

LC-PUFA biosynthesis being retained in herbivorous fish, but not in omnivorous, 417	  

carnivorous, or piscivorous fish. As alluded to above, most fish species studied to 418	  

date could fit either of these generalizations (environment or feeding habit). However, 419	  

recent studies have contributed directly to this debate. A feeding study with rabbitfish, 420	  

Siganus canaliculatus, which consumes benthic algae and seagrasses and is thus a 421	  
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rare example of a herbivorous marine fish, suggested that it was able to 422	  

biosynthesize EPA and DHA (Li et al. 2008). Very recently, it was shown that 423	  

rabbitfish possess all the fatty acyl desaturase activities required for endogenous 424	  

synthesis of LC-PUFA (Li et al. 2010). These data suggest that trophic level and/or 425	  

feeding habit are indeed important factors associated with or determining a species’ 426	  

ability for endogenous LC-PUFA synthesis. 427	  

The genus Chirostoma (silversides also known as Menidia) belongs to the family 428	  

Atherinopsidae, which contains around 150 species, most of which are marine. Thus, 429	  

C. estor is among the few representatives of totally freshwater atherinopsids and, 430	  

although it is only found in some lakes of the Mexican Central Plateau, it shares 431	  

common ancestry with marine Atherinopsids (Barbour 1973). However, the 432	  

evolutionary pathway for C. estor is not entirely clear (Barbour 1973), although 433	  

relationships determined by classical phylogeny can give clues to evolutionary history 434	  

(Nelson 2006). Significant advances in determining the molecular mechanisms of LC-435	  

PUFA biosynthesis in fish have been made in the last decade with the cloning and 436	  

functional characterization of fatty acyl desaturases and elongases from many fish 437	  

including freshwater, diadromous and marine species (Tocher 2010). Phylogenetic 438	  

analyses of the desaturase and elongase sequences have revealed some insights 439	  

into the possible evolutionary history of LC-PUFA biosynthesis in fish species 440	  

(Hastings et al. 2001; Zheng et al. 2004, 2009; Morais et al. 2009). The phylogenetic 441	  

sequence analysis generally reflected classical phylogeny, and grouped fish 442	  

desaturases in three distinct clusters (Leaver et al 2008). The Ostariophysi (common 443	  

carp and zebrafish), the Salmoniformes (trout and salmon), and the Acanthopterygia 444	  

(tilapia, sea bream, turbot, stickleback and medaka), with the cod 445	  

(Paracanthopterygii) branching from the Acanthopterygia line. However, many 446	  
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questions still remain (Leaver et al. 2008; Li et al. 2010; Monroig et al. 2010) and C. 447	  

estor represent an interesting species to study in this respect. The interesting 448	  

ancestry, pattern of LC-PUFA biosynthesis activity and the effects of salinity, which 449	  

conflicts with the existing paradigm, make C. estor a choice candidate for molecular 450	  

studies with the isolation, cloning and characterization of fatty acyl desaturases and 451	  

elongases being important goals for future studies. 452	  

The results of the present study have provided data that contribute to our 453	  

understanding of the unusual fatty acid profile found in tissues of C. estor indicating 454	  

that it could be explained, at least partly, by endogenous metabolic activity resulting 455	  

in elongation and desaturation of EPA to DHA. Moreover, with respect to the well-456	  

known beneficial effect of n-3 LC-PUFA on human health, it is noteworthy that the 457	  

results demonstrate that the increased ambient salinity used as part of the 458	  

management of this species in aquaculture farming should positively affect the 459	  

nutritional quality of the flesh in terms of fatty acid composition. However, a complete 460	  

understanding of fatty acid metabolism in C. estor requires further more extensive 461	  

analysis to determine the potential roles of selective β-oxidation, acylation and 462	  

incorporation of fatty acids into lipid classes, and lipid and fatty acid transport 463	  

between tissues. 464	  
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 669	  
Legends to Figures: 670	  

 671	  

FIG. 1. Total LC-PUFA biosynthesis (desaturation/elongation) activity in hepatocytes 672	  

and enterocytes of C. estor cultured at different salinities. Results are means ± S.D. 673	  

(n= 3) and represent the rate of conversion (pmol.h-1.mg protein-1) of [1-14C]18:3n-3 674	  

to all desaturated products (sum of radioactivity recovered as 18:4n-3, 20:4n-3, 675	  

20:5n-3, 22:5n-3 and 22:6n-3). Columns assigned to a specific cell type with different 676	  

superscript letters are significantly different as determined by one-way ANOVA 677	  

followed by the Tukey post test (P < 0.05). 678	  

 679	  

FIG. 2. Individual fatty acid products of the desaturation and elongation of [1-680	  

14C]18:3n-3 in C. estor hepatocytes.  Results are means ± S.D. (n = 3) and represent 681	  

the rate of production (pmol.h-1.mg protein-1) of individual fatty acids as determined 682	  

by the recovery of radioactivity in each fatty acid fraction. Columns referring to a 683	  

specific fatty acid having different superscript letters are significantly different as 684	  

determined by one-way ANOVA followed by the Tukey post test (P < 0.05). 685	  

 686	  

FIG. 3. Individual fatty acid products of the desaturation and elongation of [1-687	  

14C]18:3n-3 in C. estor enterocytes.  Results are means ± S.D. (n = 3) and represent 688	  

the rate of production (pmol.h-1.mg protein-1) of individual fatty acids as determined 689	  

by the recovery of radioactivity in each fatty acid fraction. Columns referring to a 690	  

specific fatty acid having different superscript letters are significantly different as 691	  

determined by one-way ANOVA followed by the Tukey post test (P < 0.05). 692	  

 693	  



	   31	  

FIG. 4. Production of desaturation/elongation products from labeled EPA in 694	  

hepatocytes and enterocytes of C. estor cultured at different salinities. Results are 695	  

means ± S.D. (n= 3) and represent the rate of conversion (pmol.h-1.mg protein-1) of 696	  

[1-14C] 20:5n-3 to metabolised products (sum of radioactivity recovered as 22:5n-3 697	  

and 22:6n-3).  Columns representing a specific cell type with different superscript 698	  

letters are significantly different as determined by one-way ANOVA followed by the 699	  

Tukey post test (P < 0.05). 700	  

 701	  

FIG. 5. Individual fatty acid products of the desaturation and elongation of [1-14C] 702	  

20:5n-3 in C. estor hepatocytes. Results are means ± S.D. (n = 3) and represent the 703	  

rate of production (pmol.h-1.mg protein-1) of individual fatty acids as determined by 704	  

the recovery of radioactivity in each fatty acid fraction. Columns referring to a specific 705	  

fatty acid having different superscript letters are significantly different as determined 706	  

by one-way ANOVA followed by the Tukey post test (P < 0.05). 707	  

 708	  

FIG. 6. Individual fatty acid products of the desaturation and elongation of [1-14C] 709	  

20:5n-3 in C. estor enterocytes.  Results are means ± S.D. (n = 3) and represent the 710	  

rate of production (pmol.h-1.mg protein-1) of individual fatty acids as determined by 711	  

the recovery of radioactivity in each fatty acid fraction. Columns referring to a specific 712	  

fatty acid having different superscript letters are significantly different as determined 713	  

by one-way ANOVA followed by the Tukey post test (P < 0.05). 714	  

 715	  

  716	  
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