368 research outputs found

    The Effect of Nitrided Layer on Antibacterial Properties for Biomedical Stainless Steel

    Get PDF
    AbstractPlasma nitriding of AISI type 303 austenitic stainless steel using microwave system at various input powers was conducted in present study. The nitrided layers were characterized via scanning electron microscopy, transmission electron microscopy and Vickers microhardness tester. The anti-bacterial property of this nitrided layer was also evaluated. The analytical results revealed the hardness of AISI type 303 stainless steel could be enhanced with nitriding process. The microstructure of the nitrided layer comprised of nitrogen-expanded γ phase. Bacterial test demonstrated the nitrided layer processed the excellent an ti-bacterial properties. The enhanced hardness and anti-bacterial properties make the nitrided AISI type 303 austenitic stainless steel the potential material in the biomedical applications

    Well-posedness of Bimodal State-based Switched Systems

    Get PDF
    AbstractIn this work, we consider the well-posedness of state-based switched systems in the sense of piecewise classical solutions which commonly arise in the control of hybrid systems. We give some necessary and sufficient conditions for the well-posedness of this class of systems. These results can be used as tools for excluding the bimodal system having a Zeno state

    Structural analysis of five-coordinate aluminium(salen) complexes and its relationship to their catalytic activity

    Get PDF
    The crystal structure of [Al(tBu-salen)]2O·HCl shows major changes compared to that of [Al(tBu-salen)]2O. The additional proton is localized on the bridging oxygen atom, making the aluminium atoms more electron deficient. As a result, a water molecule coordinates to one of the aluminium atoms, which becomes six-coordinate. This pushes the salen ligand associated with the six-coordinate aluminium ion closer to the other salen ligand and results in the geometry around the five-coordinate aluminium atom becoming more trigonal bipyramidal. These results experimentally mirror the predications of DFT calculations on the interaction of [Al(tBu-salen)]2O and related complexes with carbon dioxide. Variable temperature NMR studies of protonated [Al(tBu-salen)]2O complexes revealed that the structures were dynamic and could be explained on the basis of an intramolecular rearrangement in which the non-salen substituent of a five-coordinate aluminium(tBu-salen) unit migrates from one face of a square based pyramidal structure to the other via the formation of structures with trigonal bipyramidal geometries. Protonated [Al(tBu-salen)]2O complexes were shown to have enhanced Lewis acidity relative to [Al(tBu-salen)]2O, coordinating to water, dioxane and 1,2-epoxyhexane. Coordinated epoxyhexane was activated towards ring-opening, to give various species which remained coordinated to the aluminium centers. The protonated [Al(tBu-salen)]2O complexes catalysed the synthesis of cyclic carbonates from epoxides and carbon dioxide both in the presence and absence of tetrabutylammonium bromide as a nucleophilic cocatalyst. The catalytic activity was principally determined by the nature of the nucleophilic species within the catalyst structure rather than by changes to the Lewis acidity of the metal centers

    ACTIVATION OF DIFFERENT CEREBRAL FUNCTIONAL REGIONS FOLLOWING ACUPUNCTURE AT BOT H TAIXI AND TAICHONG ACUPOINTS AND TAIXI ACUPOINTALONE: AN FMRI STUDY

    Get PDF
    Background: To explore the brain function regions characteristics of the acupoint combination, this study observed activity changes in the brain regions of healthy volunteers after acupuncture at both Taixi (KI3) and Taichong (LR3) (KI3 + LR3) and KI3 alone using resting-state functional magnetic resonance imaging (fMRI). Methods and Materials: 30 healthy volunteers were randomly allocated into two groups, one group received acupuncture at KI3 and LR3, the other only acupuncture at KI3, 15 cases in each group. All volunteers underwent resting-state fMRI of the brain 15 minutes before acupuncture, and which the needle was retained in place for 30 minutes; 15 minutes after withdrawing the needle underwent a further session of resting-state fMRI. The amplitude of low-frequency fluctuation (ALFF) and regional homogeneity (ReHo) were used to analyze the changes in brain regions. Results: The KI3+LR3 group compared with the KI3 group, the ALFF analysis indicated that the brain changes relatively concentrated in BA 2, 3, 7, 8, 9, 10, 18, 19, 20, 31, 32, 40, 46 and the cerebellum posterior lobe, the ReHo analysis indicated that the brain changes relatively concentrated in BA 4, 6, 7, 10, 11, 18, 19, 20, 21, 22, 31, 40 and the cerebellum posterior lobe. Conclusion: Based on this study, compared with acupuncture at KI3, acupuncture at KI3 + LR3 which could specifically influence BA 7, 10, 18, 19, 20, 31, 40 and cerebellum posterior lobe, which may be related to synergy mechanism of two acupoints combination treatment

    Optimal Control of Nonlinear Switched Systems: Computational Methods and Applications

    Get PDF
    A switched system is a dynamic system that operates by switching between different subsystems or modes. Such systems exhibit both continuous and discrete characteristics—a dual nature that makes designing effective control policies a challenging task. The purpose of this paper is to review some of the latest computational techniques for generating optimal control laws for switched systems with nonlinear dynamics and continuous inequality constraints. We discuss computational strategiesfor optimizing both the times at which a switched system switches from one mode to another (the so-called switching times) and the sequence in which a switched system operates its various possible modes (the so-called switching sequence). These strategies involve novel combinations of the control parameterization method, the timescaling transformation, and bilevel programming and binary relaxation techniques. We conclude the paper by discussing a number of switched system optimal control models arising in practical applications

    A study of charged kappa in J/ψ→K±Ksπ∓π0J/\psi \to K^{\pm} K_s \pi^{\mp} \pi^0

    Full text link
    Based on 58×10658 \times 10^6 J/ψJ/\psi events collected by BESII, the decay J/ψ→K±Ksπ∓π0J/\psi \to K^{\pm} K_s \pi^{\mp} \pi^0 is studied. In the invariant mass spectrum recoiling against the charged K∗(892)±K^*(892)^{\pm}, the charged κ\kappa particle is found as a low mass enhancement. If a Breit-Wigner function of constant width is used to parameterize the kappa, its pole locates at (849±77−14+18)−i(256±40−22+46)(849 \pm 77 ^{+18}_{-14}) -i (256 \pm 40 ^{+46}_{-22}) MeV/c2c^2. Also in this channel, the decay J/ψ→K∗(892)+K∗(892)−J/\psi \to K^*(892)^+ K^*(892)^- is observed for the first time. Its branching ratio is (1.00±0.19−0.32+0.11)×10−3(1.00 \pm 0.19 ^{+0.11}_{-0.32}) \times 10^{-3}.Comment: 14 pages, 4 figure

    Partial wave analysis of J/\psi \to \gamma \phi \phi

    Get PDF
    Using 5.8×107J/ψ5.8 \times 10^7 J/\psi events collected in the BESII detector, the radiative decay J/ψ→γϕϕ→γK+K−KS0KL0J/\psi \to \gamma \phi \phi \to \gamma K^+ K^- K^0_S K^0_L is studied. The ϕϕ\phi\phi invariant mass distribution exhibits a near-threshold enhancement that peaks around 2.24 GeV/c2c^{2}. A partial wave analysis shows that the structure is dominated by a 0−+0^{-+} state (η(2225)\eta(2225)) with a mass of 2.24−0.02+0.03−0.02+0.032.24^{+0.03}_{-0.02}{}^{+0.03}_{-0.02} GeV/c2c^{2} and a width of 0.19±0.03−0.04+0.060.19 \pm 0.03^{+0.06}_{-0.04} GeV/c2c^{2}. The product branching fraction is: Br(J/ψ→γη(2225))⋅Br(η(2225)→ϕϕ)=(4.4±0.4±0.8)×10−4Br(J/\psi \to \gamma \eta(2225))\cdot Br(\eta(2225)\to \phi\phi) = (4.4 \pm 0.4 \pm 0.8)\times 10^{-4}.Comment: 11 pages, 4 figures. corrected proof for journa

    The σ\sigma pole in J/ψ→ωπ+π−J/\psi \to \omega \pi^+ \pi^-

    Full text link
    Using a sample of 58 million J/ψJ/\psi events recorded in the BESII detector, the decay J/ψ→ωπ+π−J/\psi \to \omega \pi^+ \pi^- is studied. There are conspicuous ωf2(1270)\omega f_2(1270) and b1(1235)πb_1(1235)\pi signals. At low ππ\pi \pi mass, a large broad peak due to the σ\sigma is observed, and its pole position is determined to be (541±39)(541 \pm 39) - ii (252±42)(252 \pm 42) MeV from the mean of six analyses. The errors are dominated by the systematic errors.Comment: 15 pages, 6 figures, submitted to PL
    • …
    corecore