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Abstract A switched system is a dynamic system that operates by switching between different
subsystems or modes. Such systems exhibit both continuous and discrete characteristics—a dual
nature that makes designing effective control policies a challenging task. The purpose of this
paper is to review some of the latest computational techniques for generating optimal control laws
for switched systems with nonlinear dynamics and continuous inequality constraints. We discuss
computational strategies for optimizing both the times at which a switched system switches from
one mode to another (the so-called switching times) and the sequence in which a switched system
operates its various possible modes (the so-called switching sequence). These strategies involve
novel combinations of the control parameterization method, the time-scaling transformation, and
bilevel programming and binary relaxation techniques. We conclude the paper by discussing a
number of switched system optimal control models arising in practical applications.
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1 Introduction

Many real-world systems operate by switching between different subsystems ormodes. Such systems
are called switched systems. An example of a switched system is a switched-capacitor DC/DC
power converter, which operates by switching between different circuit topologies to produce a
steady output voltage [18,44]. Other examples of switched systems include robots [9], fed-batch
bioreactors [35], DISC engines [52], and power management devices [51].

As with any system, switched systems are manipulated by varying certain input variables. These
input variables could be time-varying signals (control signals) or time-invariant parameters (system
parameters). The switching times (the times at which the switched system switches from one mode
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to another) and the mode sequence (the sequence in which the switched system operates its various
possible modes) can also be considered as input variables. In this paper, we are concerned with
switched system optimal control problems in which the input variables must be chosen judiciously
so that some measure of system performance is maximized.

Switched system optimal control problems arise naturally when the control system under con-
sideration has multiple operating modes. Such problems can also arise when solving conventional
optimal control problems for single-mode systems. Indeed, by using the Pontryagin maximum
principle [49], it is often possible to show that the optimal control for a conventional single-mode
system is composed of a mixture of bang-bang and singular regimes, and these regimes can be
considered as modes in an associated switched system model [56]. In this case, the conventional
optimal control problem reduces to a switched system optimal control problem in which the aim
is to determine the optimal switching times and/or optimal mode sequence.

The general switched system framework also encapsulates dynamic systems in which some
(or all) of the control variables assume values in a discrete set. Such discrete-valued control vari-
ables arise in many applications, including submarine control [11], hybrid power systems [54],
micro-robots [4], sensor scheduling [63], switching power amplifiers [57], subway trains [55], and
gradient-elution chromatography [12]. An optimal control problem involving discrete-valued control
variables is called an optimal discrete-valued control problem [27,68]. Such problems can be viewed
as switched system optimal control problems in which each discrete control value corresponds to a
distinct mode. Thus, techniques for solving switched system optimal control problems are directly
applicable to optimal discrete-valued control problems.

Optimal control theory for switched systems is now well developed; see [6,10,24,58] and the
references cited therein. However, for switched systems with nonlinear subsystems and/or nonlinear
state constraints (which includes most switched systems arising in practice), analytical techniques
are not sufficient to determine an optimal control policy. Thus, numerical optimization methods
for switched systems are now attracting significant attention from the research community.

The control parameterization method [59] and the time-scaling transformation [27] are two
fundamental numerical methods for solving nonlinear optimal control problems, including switched
system optimal control problems. Control parameterization involves approximating the control
by a linear combination of basis functions, where the coefficients in the linear combination are
decision variables to be chosen optimally. The time-scaling transformation provides a mechanism for
optimizing the knot points used in control parameterization, thereby increasing solution accuracy.
The purpose of this paper is to review the latest advances in the control parameterization and
time-scaling techniques for solving switched system optimal control problems.

The remainder of this paper is organized as follows. In Section 2, we introduce the mathematical
formulation of a general switched system optimal control problem. In Section 3, we introduce the
control parameterization method for the simple case in which both the switching times and the
mode sequence are fixed and known. Then, in Section 4, we show how to combine the control
parameterization method with the time-scaling transformation to handle situations in which the
switching times are decision variables to be optimized. In Section 5, we discuss three strategies
for optimizing the mode sequence in a switched system. Finally, in Section 6, we describe some
switched system optimal control models arising in practical applications.

2 Switched System Optimal Control Problems

We consider the following prototypical switched system with m modes and p stages:

ẋ(t) = fvi(t,x(t),u(t), ζ), t ∈ [τi−1, τi), i = 1, . . . , p, (1)

x(0) = x0, (2)

where t denotes time; x(t) ∈ R
n is the state vector at time t; u(t) ∈ R

r is the control vector at
time t; ζ ∈ R

w is the parameter vector ; τ0 = 0 is the initial time; τp = T is the terminal time; τi,
i = 1, . . . , p− 1, are the switching times or switching instants ; vi ∈ {1, . . . ,m} is the active mode
(one of m possible modes) during the ith stage (interval [τi−1, τi)); x

0 ∈ R
n is a given initial state;

and f j : R × R
n × R

r × R
w → R

n, j = 1, . . . ,m, are given continuously differentiable functions
that define the subsystem dynamics.
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System (1)-(2) operates as follows. It begins in state x0 at time t = 0. From t = 0 to t = τ1,
the system runs smoothly according to equation (1) with i = 1 (mode v1). Then, at time t = τ1,
the system switches from mode v1 to mode v2. After the mode switch, the system continues to
run smoothly according to equation (1) with i = 2 (mode v2) until time t = τ2, at which point the
system changes mode once again. The system continues to evolve in this manner until it reaches
the terminal time t = τp = T . The interval [0, T ] is called the time horizon.

In each mode, equation (1) expresses the rate of change of the system’s state as a function of
the current time, the current state, the current control, and the current parameter vector. The
sequence of active modes {v1, . . . , vp} is called the mode sequence or switching sequence.

The control and parameter vectors in (1)-(2) are decision variables (or input variables) through
which the system operator can influence the behaviour of the system. The control vector is a time-
varying decision variable and the parameter vector is a time-invariant decision variable. The aim
is to manipulate these decision variables in an optimal manner so that system (1)-(2) performs as
efficiently as possible. In many switched systems, the switching times and/or mode sequence are
also decision variables to be chosen optimally. Thus, in general, there is no requirement that p (the
number of stages) is equal to m (the number of possible modes).

As an example of a switched system, consider the following system of ordinary differential
equations with discrete-valued control variables :

ẋ(t) = f(t,x(t),u(t)), t ∈ [0, T ],

x(0) = x0,

where
u(t) ∈ {u1, . . . ,um}, t ∈ [0, T ].

This system can be written in the form of (1)-(2) as follows:

ẋ(t) = f(t,x(t),uvi), t ∈ [τi−1, τi), i = 1, . . . , p,

x(0) = x0,

where p − 1 is the number of control switches; τi, i = 1, . . . , p − 1, are the times at which the
control switches from one discrete value to another; and vi ∈ {1, . . . ,m}, i = 1, . . . , p, define the
sequence in which the control assumes the various discrete values in {u1, . . . ,um}. Thus, a system
with discrete-valued control variables can be viewed as a switched system.

In some switched systems, the state vector experiences an instantaneous “jump” when the
system switches from one mode to another. This so-called state jump is typically expressed as
follows:

x(τ+i ) = φi(x(τ−i ), ζ), i = 1, . . . , p− 1, (3)

where φi : Rn × R
w → R

n, i = 1, . . . , p− 1, are given continuously differentiable functions and

x(τ±i ) = lim
t→τi±

x(t).

Switched systems with state jumps are called impulsive systems or switched impulsive systems in
the literature. Note that the jump conditions (3) are still valid for switched systems without state
jumps: we can simply define φi = x(τ−i ) for each i = 1, . . . , p− 1 so that no state jumps occur.

In any practical system, the control vector—an input to the system—cannot be unbounded.
Thus, the components of the control vector must lie within specified lower and upper bounds:

al ≤ ul(t) ≤ bl, t ∈ [0, T ], l = 1, . . . , r, (4)

where al and bl are given constants such that al < bl. Any Borel measurable function u : [0, T ] → R
r

satisfying (4) is called an admissible control function.
The components of the parameter vector are also bounded:

cl ≤ ζl ≤ dl, l = 1, . . . , w, (5)

where cl and dl are given constants such that cl < dl. Any vector ζ ∈ R
w satisfying (5) is called

an admissible parameter vector.
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In addition to the simple bound constraints (4) and (5), practical problems often contain more
complicated constraints involving both the state and the control. We consider two types of mixed
state-control constraints: canonical constraints and continuous inequality constraints.

Canonical constraints are expressed as follows:

Φj(x(T ), ζ) +

∫ T

0

Lj(t,x(t),u(t), ζ)dt

{

= 0

≥ 0
j ∈ J1, (6)

where J1 is a finite index set and Φj : Rn × R
w → R and Lj : R × R

n × R
r × R

w → R, j ∈ J1,
are given continuously differentiable functions. The canonical form on the left-hand side of (6)
encapsulates many of the common constraints arising in practice. For example, terminal state
constraints in the form of x(T ) = xf , where xf is a desired final state, can be modelled by a
canonical equality constraint with Φj = ‖x(T )− xf‖2 and Lj = 0.

Each canonical function on the left-hand side of (6) evaluates to a single number, which must
be either zero or non-negative, depending on whether the constraint is of equality or inequality
type. Thus, each canonical constraint constitutes a single restriction on the system. Continuous
inequality constraints, on the other hand, constitute an infinite number of restrictions: they are
used to impose conditions that must be satisfied at every point in the time horizon. Such constraints
are expressed as follows:

hj(t,x(t),u(t), ζ) ≥ 0, t ∈ [0, T ], j ∈ J2, (7)

where J2 is a finite index set and hj : R × R
n × R

r × R
w → R, j ∈ J2, are given continuously

differentiable functions.
In theory, a continuous inequality constraint in the form of (7) can be transformed into an

equivalent canonical equality constraint with Φj = 0 and Lj = min{hj, 0}
2. However, this trans-

formation is known to cause computational difficulties [45]. Thus, as explained later in this paper,
a better approach is to use the constraint transcription method to approximate the continuous
inequality constraints (7) by canonical inequality constraints.

To measure system cost, we define the following cost function:

g0 = Φ0(x(T ), ζ) +

∫ T

0

L0(t,x(t),u(t), ζ)dt, (8)

where Φ0 : Rn × R
w → R and L0 : R × R

n × R
r × R

w → R are given continuously differentiable
functions. Note that this cost function has the same form as the canonical constraints.

Our switched system optimal control problem can now be stated as follows: Choose an admis-
sible control function u and an admissible parameter vector ζ (as well as possibly the switching
times τi, i = 1, . . . , p − 1, and the mode sequence {v1, . . . , vp}) to minimize the cost function (8)
subject to the switched system (1)-(2), the jump conditions (3), the canonical constraints (6), and
the continuous inequality constraints (7).

3 Control Parameterization

It is usually not possible to derive an analytical solution to a switched system optimal control
problem. Thus, numerical methods are indispensable, especially for practical problems. One of the
main hurdles with solving an optimal control problem numerically is that the value of the control
vector needs to be determined at every point in the time horizon—an infinite number of points. To
overcome this difficulty, control parameterization can be used to approximate the control signal by
a piecewise-constant function. We now describe this approach as it pertains to switched systems.

3.1 Control Approximation

For simplicity, we assume that the switching times and mode sequence are fixed and known. This
assumption is relaxed in subsequent sections.
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Fig. 1 A piecewise-constant control approximation with p = 3 and q = (3, 2, 4).

Under mild conditions on the functions f j : R × R
n × R

r × R
w → R

n, j = 1, . . . ,m, it can
be shown that the switched system (1)-(2) with jump conditions (3) admits a unique solution
(see [1,3]). This solution is called the state trajectory. Let x(·|u, ζ) denote the state trajectory
corresponding to the admissible control u and the admissible parameter vector ζ.

In the control parameterization method, each subinterval [τi−1, τi) is decomposed into qi minor
subintervals [γi

k−1, γ
i
k), k = 1, . . . , qi, where γi

k, k = 0, . . . , qi, are pre-fixed knot points such that

τi−1 = γi
0 < γi

1 < γi
2 < · · · < γi

qi−1 < γi
qi

= τi.

The control function is then approximated by a constant vector on each minor subinterval:

u(t) ≈ σi,k, t ∈ [γi
k−1, γ

i
k), k = 1, . . . , qi, i = 1, . . . , p. (9)

Let
σi =

[
(σi,1)⊤, . . . , (σi,qi)⊤

]⊤
, i = 1, . . . , p,

and
σ =

[
(σ1)⊤, . . . , (σp)⊤

]⊤
.

The control approximation in (9) can be written as follows:

u(t) ≈ uq(t|σ) =

p
∑

i=1

qi∑

k=1

σi,kχ[γi
k−1

,γi
k
)(t), t ∈ [0, T ), (10)

where q = (q1, . . . , qp) and χ[γi
k−1

,γi
k
) : R → R is the indicator function defined by

χ[γi
k−1

,γi
k
)(t) =

{

1, if t ∈ [γi
k−1, γ

i
k),

0, otherwise.

An example of uq(·|σ) is shown in Figure 1. Note that equation (10) does not define the value of
uq(·|σ) at the terminal time. By convention, we define uq(T |σ) = uq(T−|σ) = σp,qp .

It follows from (4) that the components of σ must satisfy the following bound constraints:

al ≤ σi,k
l ≤ bl, l = 1, . . . , r, k = 1, . . . , qi, i = 1, . . . , p.

Substituting (10) into (1)-(3) gives

ẋ(t) = fvi(t,x(t),σi,k, ζ), t ∈ [γi
k−1, γ

i
k), k = 1, . . . , qi, i = 1, . . . , p, (11)

x(τ+i ) = φi(x(τ−i ), ζ), i = 1, . . . , p− 1, (12)

x(0) = x0. (13)

Let xq(·|σ, ζ) denote the solution of (11)-(13) corresponding to the admissible pair (σ, ζ). Then
clearly,

xq(t|σ, ζ) = x(t|uq(·|σ), ζ), t ∈ [0, T ].
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Constraints (6) and (7) become

gqj (σ, ζ) = Φj(x
q(T |σ, ζ), ζ) +

p
∑

i=1

qi∑

k=1

∫ γi
k

γi
k−1

Lj(t,x
q(t|σ, ζ),σi,k, ζ)dt

{

= 0

≥ 0
j ∈ J1, (14)

and

hj(t,x
q(t|σ, ζ),σi,k, ζ) ≥ 0, t ∈ [γi

k−1, γ
i
k], k = 1, . . . , qi, i = 1, . . . , p, j ∈ J2. (15)

Furthermore, the cost function (8) becomes

gq0(σ, ζ) = Φ0(x
q(T |σ, ζ), ζ) +

p
∑

i=1

qi∑

k=1

∫ γi
k

γi
k−1

L0(t,x
q(t|σ, ζ),σi,k, ζ)dt. (16)

Thus, after applying the control parameterization method, the switched system optimal control
problem in Section 2 becomes the following approximate problem: Choose an admissible pair (σ, ζ)
to minimize the cost function (16) subject to the switched system (11)-(13), the canonical con-
straints (14), and the continuous inequality constraints (15).

Let (σq,∗, ζq,∗) denote the solution of the approximate problem corresponding to q = (q1, . . . , qp).
Furthermore, let (u∗, ζ∗) denote the solution of the original optimal control problem. Then under
suitable conditions, it can be shown that

lim
qi→∞

g0(u
q(·|σq,∗), ζq,∗) = g0(u

∗, ζ∗). (17)

This implies that the approximate problem is a good approximation of the original problem when
the number of minor subintervals is large. Proofs of equation (17) are given in [40,45,59].

3.2 Constraint Approximation

The original optimal control problem involves an infinite number of decision variables (the value
of u at every point in [0, T ]) and an infinite number of constraints (the continuous inequality
constraints imposed at every point in [0, T ]). Applying the control parameterization method, in
which the control is approximated by a piecewise-constant function, causes the number of deci-
sion variables to become finite. However, control parameterization does not reduce the number of
constraints. Indeed, the approximate problem still contains continuous inequality constraints that
restrict the state variables at an infinite number of time points (see (15)). Thus, the approximate
problem can be viewed as a semi-infinite programming problem [75].

In this subsection, we will discuss two popular methods for handling continuous inequality
constraints in optimal control: the constraint transcription method [20,45,59,60] and the exact
penalty method [33,72,73]. Both of these methods are designed to work in conjunction with the
control parameterization technique.

In the constraint transcription method, we convert (15) into the following set of equivalent
integral constraints:

p
∑

i=1

qi∑

k=1

∫ γi
k

γi
k−1

min
{
hj(t,x

q(t|σ, ζ),σi,k, ζ), 0
}
dt = 0, j ∈ J2. (18)

This constraint, however, is non-smooth—a non-desirable trait that poses problems for conventional
optimization algorithms. Hence, we approximate (18) as follows:

ρ+

p
∑

i=1

qi∑

k=1

∫ γi
k

γi
k−1

ϕǫ(hj(t,x
q(t|σ, ζ),σi,k, ζ))dt ≥ 0, j ∈ J2, (19)

where ǫ > 0 and ρ > 0 are adjustable parameters and ϕǫ : R → R is a so-called smoothing function
defined by

ϕǫ(α) =







α, if α < −ǫ,

−(α− ǫ)2/4ǫ, if −ǫ ≤ α ≤ ǫ,

0, if α > ǫ.
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ϕǫ(α)

−ǫ ǫ

Fig. 2 The smoothing function ϕǫ in the constraint transcription method.

A plot of ϕǫ is given in Figure 2. Note that ϕǫ is continuously differentiable and ϕǫ → min{·, 0}
pointwise on R as ǫ → 0.

It is easy to see that the approximate constraint (19) corresponds to a canonical inequality
constraint with

Φj = ρ, Lj = ϕǫ(hj(t,x
q(t|σ, ζ),σi,k, ζ)).

Thus, replacing (15) with (19) yields a dynamic optimization problem with a finite number of
decision variables and a finite number of canonical constraints. It can be shown (see [20,59]) that
for each ǫ > 0, there exists a corresponding ρ(ǫ) > 0 such that whenever 0 < ρ < ρ(ǫ), constraint
(19) actually implies constraint (15). Furthermore, the optimal cost of the approximate problem
(obtained by replacing (15) with (19)) converges to the true optimal cost as ǫ → 0. Hence, when ǫ
and ρ are sufficiently small, (19) is a good approximation of (15).

As an alternative approach, the integral term on the left-hand side of (19), which is always
non-positive, can be appended to the system cost to form the following penalty function:

ĝq0(σ, ζ) = gq0(σ, ζ)− ω
∑

j∈J2

p
∑

i=1

qi∑

k=1

∫ γi
k

γi
k−1

ϕǫ(hj(t,x
q(t|σ, ζ),σi,k, ζ))dt, (20)

where ω > 0 is a penalty parameter. Note that, like the approximate constraints (19), this penalty
function is in canonical form. The corresponding penalty problem is to minimize (20) subject to
the original canonical constraints (14). It can be shown (see [60]) that for each ǫ > 0, there exists a
corresponding ω(ǫ) > 0 such that for all ω > ω(ǫ), any solution of the penalty problem satisfies the
continuous inequality constraints (15). Moreover, the optimal cost of the penalty problem converges
to the true optimal cost as ǫ → 0, provided that ω is chosen sufficiently large (i.e. ω > ω(ǫ)) at
each step of the iteration process.

In recent years, another penalty method for handling continuous inequality constraints in opti-
mal control—called the exact penalty method—has been developed. In the exact penalty method,
we define a constraint violation function as follows:

∆(σ, ζ, ǫ) =
∑

j∈J2

p
∑

i=1

qi∑

k=1

∫ γi
k

γi
k−1

max{−hj(t,x
q(t|σ, ζ),σi,k, ζ)− ǫν, 0}2dt,

where ǫ > 0 is a new decision variable and ν ∈ (0, 1) is a fixed constant. Note that ∆(σ, ζ, ǫ) = 0
if and only if

hj(t,x
q(t|σ, ζ),σi,k, ζ) ≥ −ǫν, t ∈ [γi

k−1, γ
i
k], k = 1, . . . , qi, i = 1, . . . , p, j ∈ J2.

Thus, ∆(σ, ζ, ǫ) measures the violation of the continuous inequality constraints (15).
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Now, consider the following penalty function (which is in canonical form):

ĝq0(σ, ζ, ǫ) = gq0(σ, ζ) + ǫ−α∆(σ, ζ, ǫ) + ωǫβ, (21)

where ω > 0 is the penalty parameter and α > 0 and β > 0 are fixed constants.
In the penalty function (21), the last term ωǫβ is designed to penalize large values of ǫ, while the

middle term ǫ−α∆(σ, ζ, ǫ) is designed to penalize violations in the continuous inequality constraints
(15). When ω is large, minimizing (21) forces ǫ to be small, which in turn causes ǫ−α to become
large, and thus constraint violations are penalized very severely. Hence, minimizing the penalty
function for large values of ω will lead to feasible points satisfying (15). It can be shown that the
penalty function (21) is “exact” in the sense that when ω is sufficiently large, any local minimizer
of the penalty function is also a local minimizer of the original problem with continuous inequality
constraints. See [33,72,73] for details.

3.3 Gradient Formulae

In the previous subsection, we described three methods for approximating the continuous inequality
constraints (15). Applying any one of these methods yields an approximate dynamic optimization
problem with a finite number of decision variables and a finite number of canonical constraints.
We now discuss how to solve this approximate problem.

In principle, the approximate problem can be viewed as a nonlinear programming problem in
which a finite number of decision variables need to be chosen to minimize a given cost function
subject to a set of constraints. However, this approximate problem differs from conventional non-
linear programming problems in one very important aspect: its cost and constraints are implicit,
rather than explicit, functions of the decision vectors σ and ζ. Indeed, σ and ζ influence the
cost and constraints implicitly through the dynamic system (11)-(13). This means that the partial
derivatives of the cost and constraints, which are required by nonlinear programming algorithms
[46,48], cannot be determined using normal differentiation rules. Thus, special methods need to be
developed to determine these partial derivatives. We now describe two such methods—the vari-
ational method [31,61,67] and the costate method [28,66]. These methods can be combined with
any standard nonlinear programming algorithm to solve the approximate problem efficiently.

We start with the variational method. Define the Kronecker delta function as follows:

δij =

{

1, if i = j,

0, otherwise.

Furthermore, as is customary in the literature on control parameterization, we use the following
notation for the partial derivatives of f j and φi with respect to x:

∂f j(t,x,u, ζ)

∂x
=










∂f j
1 (t,x,u, ζ)

∂x1
· · ·

∂f j
1 (t,x,u, ζ)

∂xn
...

. . .
...

∂f j
n(t,x,u, ζ)

∂x1
· · ·

∂f j
n(t,x,u, ζ)

∂xn










and

∂φi(x, ζ)

∂x
=










∂φi
1(x, ζ)

∂x1
· · ·

∂φi
1(x, ζ)

∂xn
...

. . .
...

∂φi
n(x, ζ)

∂x1
· · ·

∂φi
n(x, ζ)

∂xn










.

Furthermore, the derivatives of Φj and Lj with respect to x are

∂Φj(x, ζ)

∂x
=

[
∂Φj(x, ζ)

∂x1
· · ·

∂Φj(x, ζ)

∂xn

]

,
∂Lj(t,x,u, ζ)

∂x
=

[
∂Lj(t,x,u, ζ)

∂x1
· · ·

∂Lj(t,x,u, ζ)

∂xn

]

.

Other derivatives are defined in a similar fashion.
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Consider the following variational system corresponding to the control value σς,κ
l :

ξ̇ς,κ,l(t) =
∂fvi(t,xq(t|σ, ζ),σi,k, ζ)

∂x
ξς,κ,l(t) + δςiδκk

∂fvi(t,xq(t|σ, ζ),σi,k, ζ)

∂ul

,

t ∈ [γi
k−1, γ

i
k), k = max{1, δςiκ}, . . . , qi, i = ς, . . . , p,

(22)

with jump conditions

ξς,κ,l(τ+i ) =
∂φi(xq(τ−i |σ, ζ), ζ)

∂x
ξς,κ,l(τ−i ), i = ς, . . . , p− 1, (23)

and initial conditions
ξς,κ,l(t) = 0, t ≤ γς

κ−1. (24)

Let ξς,κ,l(·|σ, ζ) denote the solution of (22)-(24). Then it can be shown that ξς,κ,l(·|σ, ζ) is the
partial derivative of the state with respect to the control value σς,κ

l :

∂xq(t|σ, ζ)

∂σς,κ
l

= ξς,κ,l(t|σ, ζ), t ∈ [0, T ]. (25)

See [31,43] for formal proofs of this result.
Now, for the partial derivative of the state with respect to the system parameter ζl, we consider

another variational system:

ψ̇l(t) =
∂fvi(t,xq(t|σ, ζ),σi,k, ζ)

∂x
ψl(t) +

∂fvi(t,xq(t|σ, ζ),σi,k, ζ)

∂ζl
,

t ∈ [γi
k−1, γ

i
k), k = 1, . . . , qi, i = 1, . . . , p,

(26)

with jump conditions

ψl(τ+i ) =
∂φi(xq(τ−i |σ, ζ), ζ)

∂x
ψl(τ−i ) +

∂φi(xq(τ−i |σ, ζ), ζ)

∂ζl
, i = 1, . . . , p− 1, (27)

and initial conditions
ψl(0) = 0. (28)

Let ψl(·|σ, ζ) denote the solution of (26)-(28). Then according to the results in [31,43],

∂xq(t|σ, ζ)

∂ζl
= ψl(t|σ, ζ), t ∈ [0, T ]. (29)

Equations (25) and (29) can be used to determine the partial derivatives of the cost and constraints
in the approximate problem. Recall that the cost and constraints have the following canonical form:

gqj (σ, ζ) = Φj(x
q(T |σ, ζ), ζ) +

p
∑

i=1

qi∑

k=1

∫ γi
k

γi
k−1

Lj(t,x
q(t|σ, ζ),σi,k, ζ)dt.

By differentiating this canonical form with respect to σς,κ
l , and then applying (25), we obtain the

following gradient formulae:

∂gqj (σ, ζ)

∂σς,κ
l

=
∂Φj(x

q(T ), ζ)

∂x
ξς,κ,l(T )

+

p
∑

i=1

qi∑

k=1

∫ γi
k

γi
k−1

{
∂Lj(t,x

q(t),σi,k, ζ)

∂x
ξς,κ,l(t) + δςiδκk

∂Lj(t,x
q(t),σi,k, ζ)

∂ul

}

dt,

(30)

where xq(·) = xq(·|σ, ζ) and ξς,κ,l(·) = ξς,κ,l(·|σ, ζ). Similarly,

∂gqj (σ, ζ)

∂ζl
=

∂Φj(x
q(T ), ζ)

∂x
ψl(T ) +

∂Φj(x
q(T ), ζ)

∂ζl

+

p
∑

i=1

qi∑

k=1

∫ γi
k

γi
k−1

{
∂Lj(t,x

q(t),σi,k, ζ)

∂x
ψl(t) +

∂Lj(t,x
q(t),σi,k, ζ)

∂ζl

}

dt,

(31)



10 Qun Lin et al.

where xq(·) = xq(·|σ, ζ) and ψl(·) = ψl(·|σ, ζ). Thus, the gradients of the cost and constraints
in the approximate problem can be computed by solving the variational systems (22)-(24) and
(26)-(28) in conjunction with the state system (11)-(13). This procedure can be combined with a
standard nonlinear optimization algorithm, such as sequential quadratic programming [46,48], to
solve the approximate problem efficiently.

A disadvantage with the variational method is that it requires solving a large number of dif-
ferential equations—there are q1r + q2r + · · · + qpr variational systems in the form of (22)-(24)
and w variational systems in the form of (26)-(28), with each variational system of dimension n.
The costate method is an alternative to the variational method that (in most cases) involves solv-
ing fewer differential equations. In the costate method, we define the following costate system
corresponding to the jth canonical form:

λ̇j(t) = −

[
∂Lj(t,x

q(t|σ, ζ),σi,k, ζ)

∂x

]⊤

−

[
∂fvi(t,xq(t|σ, ζ),σi,k, ζ)

∂x

]⊤

λj(t),

t ∈ [γi
k−1, γ

i
k), k = 1, . . . , qi, i = 1, . . . , p,

(32)

with terminal condition

λj(T ) =

[
∂Φj(x

q(T |σ, ζ), ζ)

∂x

]⊤

. (33)

As with the variational systems, each costate system is of dimension n. Let λj(·|σ, ζ) denote the
solution of the costate system (32)-(33). Then

∂gqj (σ, ζ)

∂σς,κ
l

=

∫ γς
κ

γς
κ−1

{
∂Lj(t,x

q(t),σς,κ, ζ)

∂ul

+ λj(t)⊤
∂fvς (t,xq(t),σς,κ, ζ)

∂ul

}

dt

and

∂gqj (σ, ζ)

∂ζl
=

∂Φj(x
q(T ), ζ)

∂ζl
+

p
∑

i=1

qi∑

k=1

∫ γi
k

γi
k−1

{
∂Lj(t,x

q(t),σi,k, ζ)

∂ζl
+λj(t)⊤

∂fvi(t,xq(t),σi,k, ζ)

∂ζl

}

dt,

where xq(·) = xq(·|σ, ζ) and λj(·) = λj(·|σ, ζ). These gradient formulae are proved in [59]. By
incorporating these formulae into a gradient-based optimization method, the approximate problem
can be solved as a nonlinear programming problem.

4 Variable Switching Times

In Section 3, we assumed that both the control switching times and the subsystem switching times
are fixed. The more common scenario in practice is that these switching times are actually decision
variables to be optimized. In this case, the state trajectory should be denoted as follows:

xq(·) = xq(·|σ,γ, ζ),

where
γ =

[
(γ1)⊤, . . . , (γp)⊤

]⊤

and
γi = [γi

1, . . . , γ
i
qi
]⊤, i = 1, . . . , p.

This modified notation emphasizes that the switching times, along with the control and parameter
vectors, influence the evolution of the state trajectory.

Since the switching times are now decision variables, the following constraints must be imposed
in the approximate problem:

γi
0 ≤ γi

1 ≤ · · · ≤ γi
qi−1 ≤ γi

qi
, i = 1, . . . , p,

and
γp
qp

= T,

where, as in Section 3, γi
0 = τi−1 and γi

qi
= τi.
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To solve the approximate problem when the switching times are variable, the gradients of the
cost and constraints with respect to the switching times are required. Variational and costate
formulae for computing these gradients are derived in [29]. In principle, these gradient formulae
can be combined with the gradient formulae for the control and parameter vectors in Section 3
to solve the approximate problem via nonlinear optimization techniques. This approach, however,
suffers from the following drawbacks:

(1) The partial derivatives of the canonical functions with respect to the switching times only exist
when the switching times are distinct (hence, problems will arise if the optimal solution involves
“deleting” certain non-optimal subintervals); and

(2) It is cumbersome to integrate the state and variational/costate systems numerically when the
switching times are variable.

These issues are examined in detail in [29]. To avoid the problems caused by variable switching
times, the so-called time-scaling transformation [15,28,39,66] can be applied. This transformation,
called the control parameterization enhancing transform (CPET) in earlier work, is now one of the
most popular tools for optimizing switching times in dynamic optimization problems.

4.1 The Time-Scaling Transformation: Version 1

For simplicity, we assume that there are no state jumps. Thus,

φi(x(τ−i ), ζ) = x(τ−i ), i = 1, . . . , p− 1.

Let θik denote the duration of the kth minor subinterval in [τi−1, τi). That is,

θik = γi
k − γi

k−1, k = 1, . . . , qi, i = 1, . . . , p.

Furthermore, define

s̃ik =
i−1∑

z=1

qz + k, k = 0, . . . , qi, i = 1, . . . , p,

where qi, i = 1, . . . , p, are as defined in Section 3. Note that

{ s̃ik : k = 0, . . . , qi, i = 1, . . . , p } = {0, 1, 2, . . . , q1 + q2 + · · ·+ qp}.

The time-scaling transformation works by introducing a new time variable s ∈ [0, q1 + · · · + qp]
and relating s to t through the equation t = µ(s), where µ is the so-called time-scaling function
defined by

µ(s) =

i−1∑

z=1

qz∑

l=1

θzl +

k−1∑

l=1

θil + θik(s− s̃ik−1), s ∈ [s̃ik−1, s̃
i
k], k = 1, . . . , qi, i = 1, . . . , p.

An example of the time-scaling function is given in Figure 3. Note that the time-scaling function
is piecewise-linear, continuous, and non-decreasing. These are three fundamental properties of the
time-scaling function. Furthermore,

dµ(s)

ds
= θik, s ∈ (s̃ik−1, s̃

i
k), k = 1, . . . , qi, i = 1, . . . , p.

The new decision parameters θik, k = 1, . . . , qi, i = 1, . . . , p, satisfy the following constraints:

0 ≤ θik ≤ T, k = 1, . . . , qi, i = 1, . . . , p, (34)

and
p

∑

i=1

qi∑

k=1

θik = T. (35)

Let
θi = [θi1, . . . , θ

i
qi
]⊤, i = 1, . . . , p,
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s

µ(s)

γ1

0

γ1

1
= γ1

2

γ1

3
= γ2

0

γ2

1
= γ3

0

γ3

1

γ3

2

0 s̃1
1
= 1 s̃1

2
= 2 s̃1

3
= 3 s̃2

1
= 4 s̃3

1
= 5 s̃3

2
= 6

Fig. 3 An example of the time-scaling function for p = 3 and q = (3, 1, 2). Note that s̃1
3
= s̃2

0
= 3 and s̃2

1
= s̃3

0
= 4.

and

θ =
[
(θ1)⊤, . . . , (θp)⊤

]⊤
.

Any θ ∈ R
q1+···+qp satisfying (34) and (35) is called an admissible duration vector.

Now, since s̃ik − s̃ik−1 = 1 for k ≥ 1,

µ(s̃ik) =

i−1∑

z=1

qz∑

l=1

θzl +

k∑

l=1

θil = γi
k, k = 1, . . . , qi, i = 1, . . . , p.

Thus, the time-scaling function maps the fixed integer s = s̃ik to the switching time t = γi
k.

Let x̃q(s) = xq(µ(s)). If s ∈ [s̃ik−1, s̃
i
k], then µ(s) ∈ [γi

k−1, γ
i
k], and thus

˙̃xq(s) =
d

ds

{
xq(µ(s))

}
= θikf

vi(µ(s),xq(µ(s)),σi,k, ζ) = θikf
vi(µ(s), x̃q(s),σi,k, ζ). (36)

In these new dynamics, mode switches occur at the fixed integers s = s̃ik, k = 1, . . . , qi, i = 1, . . . , p.
Since µ(0) = 0, the initial condition (13) becomes

x̃q(0) = xq(µ(0)) = xq(0) = x0. (37)

Combining (36) and (37), we obtain the following new switched system:

˙̃xq(s) = θikf
vi(µ(s), x̃q(s),σi,k, ζ), s ∈ [s̃ik−1, s̃

i
k), k = 1, . . . , qi, i = 1, . . . , p, (38)

x̃q(0) = x0. (39)

Let x̃q(·|σ, θ, ζ) denote the solution of this new switched system corresponding to the admissible
triple (σ, θ, ζ). Then constraints (14) and (15) become

Φj(x̃
q(s̃pqp |σ, θ, ζ), ζ) +

p
∑

i=1

qi∑

k=1

∫ s̃ik

s̃i
k−1

θikLj(µ(s), x̃
q(s|σ, θ, ζ),σi,k, ζ)ds

{

= 0

≥ 0
j ∈ J1, (40)

and

hj(µ(s), x̃
q(s|σ, θ, ζ),σi,k, ζ) ≥ 0, s ∈ [s̃ik−1, s̃

i
k], k = 1, . . . , qi, i = 1, . . . , p, j ∈ J2. (41)

Similarly, the cost function (16) becomes

g̃q0(σ, θ, ζ) = Φ0(x̃
q(s̃pqp |σ, θ, ζ), ζ) +

p
∑

i=1

qi∑

k=1

∫ s̃ik

s̃i
k−1

θikL0(µ(s), x̃
q(s|σ, θ, ζ),σi,k, ζ)ds. (42)
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Thus, after applying the time-scaling transformation, we obtain the following equivalent problem:
Choose an admissible triple (σ, θ, ζ) to minimize the cost function (42) subject to the switched
system (38)-(39), the canonical constraints (40), and the continuous inequality constraints (41).

Note that the time-scaling transformation has replaced the variable switching times in the
original approximate problem with conventional decision parameters in the equivalent problem.
Since the switching times in the equivalent problem are fixed, this problem can be solved readily
by combining the gradient formulae in Section 3 with any standard gradient-based optimization
method. See [28,31,53] for more details.

4.2 The Time-Scaling Transformation: Version 2

There is another way of applying the time-scaling transformation. This alternative approach, which
is described in references [34,39,66], involves transforming the switched system with variable
switching times into an enlarged system of ordinary differential equations subject to boundary
constraints.

First, define the following new state variables:

yi,k(s) = xq(γi
k−1 + θiks), s ∈ [0, 1], k = 1, . . . , qi, i = 1, . . . , p, (43)

where, as in the previous subsection, θik = γi
k − γi

k−1 and

γi
k−1 =

i−1∑

z=1

qz∑

l=1

θzl +

k−1∑

l=1

θil .

Note that yi,k(·) corresponds to xq(·) on the subinterval [γi
k−1, γ

i
k].

Differentiating (43) with respect to s yields

ẏi,k(s) =
d

ds

{
yi,k(s)

}
=

d

ds

{
xq(γi

k−1+ θiks)
}
= θikf

vi(γi
k−1+ θiks,y

i,k(s),σi,k, ζ), s ∈ [0, 1]. (44)

Furthermore,

yi,k(1) = xq(γi
k) = y

i,k+1(0), k = 1, . . . , qi − 1, i = 1, . . . , p, (45)

and

yi,qi(1) = xq(γi
qi
) = xq(γi+1

0 ) = yi+1,1(0), i = 1, . . . , p− 1. (46)

Equations (45) and (46) are boundary conditions expressing the initial value of one state variable
in terms of the final value of another. The initial conditions (13) become

y1,1(0) = xq(0) = x0. (47)

Let yi,k(·|σ, θ, ζ), k = 1, . . . , qi, i = 1, . . . , p, denote the solution of (44)-(47). Then the canonical
constraints (14) become

Φj(y
p,qp(1|σ, θ, ζ), ζ) +

p
∑

i=1

qi∑

k=1

∫ 1

0

θikL̃j(s,y
i,k(s|σ, θ, ζ),σi,k, ζ)ds

{

= 0

≥ 0
j ∈ J1, (48)

where

L̃j(s,y
i,k(s|σ, θ, ζ),σi,k, ζ) = Lj(γ

i
k−1 + θiks,y

i,k(s|σ, θ, ζ),σi,k, ζ).

Similarly, the continuous inequality constraints (15) become

h̃j(s,y
i,k(s|σ, θ, ζ),σi,k, ζ) ≥ 0, s ∈ [0, 1], k = 1, . . . , qi, i = 1, . . . , p, j ∈ J2, (49)

where

h̃j(s,y
i,k(s|σ, θ, ζ),σi,k, ζ) = hj(γ

i
k−1 + θiks,y

i,k(s|σ, θ, ζ),σi,k, ζ).
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Moreover, the cost function (16) becomes

g̃q0(σ, θ, ζ) = Φ0(y
p,qp(1|σ, θ, ζ), ζ) +

p
∑

i=1

qi∑

k=1

∫ 1

0

θikL̃0(s,y
i,k(s|σ, θ, ζ),σi,k, ζ)ds. (50)

The equivalent problem is: Choose an admissible triple (σ, θ, ζ) to minimize the cost function (50)
subject to the boundary value problem (44)-(47), the canonical constraints (48), and the continuous
inequality constraints (49). This is a standard dynamic optimization problem with fixed time
horizon [0, 1]. Such problems can be solved readily using existing methods.

4.3 State Jumps and the Time-Scaling Transformation

Thus far in this section, we have ignored the possibility of state jumps occurring at the switching
times. This is because state jumps cause complications when applying the time-scaling transforma-
tion. To see why, consider a situation in which two adjacent switching times coincide (this occurs
when the optimization procedure decides to remove a “non-optimal” subsystem by merging its
start and end times). In this case, there should be a single state jump occurring at the common
switching time. However, under the time-scaling transformation, two switching times that coincide
in the original time horizon are still treated as separate switching times in the new time horizon.
Thus, two state jumps will be imposed instead of one. For example, if τ1 = τ2 (i.e. stage 2 has been
removed), then the time-scaling transformation (version 1) will map t = τ1 to s = q1, and t = τ2
to s = q1 + q2. Thus, in the new time horizon, there will be a state jump at s = q1 and another
state jump at s = q1 + q2 (note that θ21 = θ22 = · · · = θ2q2 = 0 here, so the state vector will be
constant on the open interval (q1, q1 + q2)). This corresponds to a “double jump” in the original
time horizon at the common switching time t = τ1 = τ2.

To explain further, recall the state jump conditions from Section 2:

x(τ+i ) = φi(x(τ−i ), ζ), i = 1, . . . , p− 1. (51)

After applying control parameterization, the switching time τi is replaced by γi
qi
, where qi is the

number of minor subintervals in [τi−1, τi). Thus, the state jump conditions become

lim
t→γi

qi
+
xq(t) = lim

t→γi
qi
−
φi(xq(t), ζ), i = 1, . . . , p− 1, (52)

where xq(·) = xq(·|σ,γ, ζ). Recall that the time-scaling transformation maps t = γi
qi

to the fixed

integer s = s̃iqi = q1 + · · · + qi. Recall also that the time-scaling function µ is continuous and
non-decreasing, so µ(s) → τi± as s → (q1 + · · ·+ qi)±. Thus, by applying version 1 of time-scaling
transformation to the jump conditions (52), we obtain

lim
s→(q1+···+qi)+

x̃q(s) = lim
s→(q1+···+qi)−

φi(x̃q(s), ζ), i = 1, . . . , p− 1, (53)

where x̃q(s) = xq(µ(s)). Alternatively, using version 2 of the time-scaling transformation, since
yi+1,1(0) corresponds to x(τ+i ) and yi,qi(1) corresponds to x(τ−i ), the jump conditions (52) become

yi+1,1(0) = xq(τ+i ) = φi(xq(τ−i ), ζ) = φi(yi,qi (1), ζ), i = 1, . . . , p− 1. (54)

It is important to realize that (53) and (54) are imposed for every i = 1, . . . , p − 1. Thus, in
the new time horizon, there are exactly p− 1 state jumps. However, in the original time horizon,
there may be less than p− 1 state jumps; it is possible that several switching times coincide, with
only a single state jump occurring at the common switching time. It follows that under the time-
scaling transformation, a single state jump could be mapped into several state jumps. This may be
acceptable in situations where it makes sense to allow such “multi-jumps”, but in other situations
it may not be an accurate reflection of the real system under consideration.

In fact, the definition of the state jump conditions (51) is ambiguous when two or more switching
times coincide. To see why, suppose that τi = τi−1. Then

x(τ+i ) = φi(x(τ−i ), ζ)
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and

x(τ+i ) = x(τ+i−1) = φ
i−1(x(τ−i−1), ζ) = φ

i−1(x(τ−i ), ζ).

Thus, we have two different equations describing the state jump at the common switching time
τi = τi−1: one equation involves φi; the other involves φi−1. This ambiguity can be avoided by
following the approach proposed in [8,42], which involves replacing (51) with

x(τ+i ) = φi(x(τ−i ), ζ), i ∈ I, (55)

where

I = { i ∈ {1, . . . , p− 1} : τi > τi−1 }.

This ensures that state jumps are imposed at each distinct switching time; “multi-jumps” are
therefore not permitted. Applying version 1 of the time-scaling transformation to (55) yields

lim
s→(q1+···+qi)+

x̃q(s) =







lim
s→(q1+···+qi)−

φi(x̃q(s), ζ), if i ∈ Ĩ,

lim
s→(q1+···+qi)−

x̃q(s), if i /∈ Ĩ,
(56)

where

Ĩ = { i ∈ {1, . . . , p− 1} : θi1 + · · ·+ θiqi > 0 }.

Similarly, applying version 2 of the time-scaling transformation to (55) yields

yi+1,1(0) =

{

φi(yi,qi(1), ζ), if i ∈ Ĩ,

yi,qi(1), if i /∈ Ĩ.
(57)

Note that the number of jumps in (55) is consistent with the number of jumps in (56) and (57)
(in fact, Ĩ = I). Thus, using (55) instead of (51) ensures that the time-scaling transformation
maintains consistency with regards to the number of state jumps in the new and old time horizons.
Imposing (55), however, leads to discontinuities in the switched system optimal control problem.
Methods for tackling these discontinuities are described in [8,42].

As an alternative to (55), one can simply assume that every stage operates for a non-negligible
amount of time, thus ensuring that adjacent switching times never coincide [31]. This can be
achieved by imposing the following constraints:

τi − τi−1 ≥ ρi, i = 1, . . . , p, (58)

where ρi > 0 denotes the minimum duration of stage i. However, these constraints remove the
flexibility to eliminate “non-optimal” subsystems by merging two or more consecutive switching
times into a single switch.

5 Variable Switching Sequence

We are now ready to tackle the most general class of switched systems: those in which both the
switching times and the switching sequence are decision variables to be optimized. The major
difficulty with optimizing such systems is that the switching sequence is a discrete optimization
variable, so applying the control parameterization method invariably leads to a mixed-integer pro-
gramming problem rather than a nonlinear programming problem. In this section, we will discuss
three popular approaches for overcoming this difficulty.
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5.1 Heuristic Approach

Recall our prototypical switched system from the problem formulation in Section 2:

ẋ(t) = fvi(t,x(t),u(t), ζ), t ∈ [τi−1, τi), i = 1, . . . , p, (59)

x(τ+i ) = φi(x(τ−i ), ζ), i = 1, . . . , p− 1, (60)

x(0) = x0. (61)

This switched system evolves over p stages, with the system mode fixed during each stage. Thus,
there are at most p − 1 mode switches. The problem is to determine the optimal mode for each
stage and the corresponding stage duration.

Recall that there are m possible modes—i.e. vi ∈ {1, . . . ,m} for each i = 1, . . . , p. To allow for
every possible switching sequence, we divide each subinterval [τi−1, τi), i = 1, . . . , p, into m minor
subintervals—one for each element in {1, . . . ,m}. The mode on each minor subinterval is then set to
the corresponding element in {1, . . . ,m}. As we will see, by introducing additional subintervals in
this manner, any switching sequence with at most p−1 switches can be replicated by manipulating
the subinterval lengths. Thus, the problem of determining an optimal switching sequence is reduced
to a switching time optimization problem. We discuss the details of this transformation procedure
below.

Let ηk, k = 1, . . . ,mp− 1, be new switching times that satisfy the following constraints:

0 = η0 ≤ η1 ≤ η2 ≤ · · · ≤ ηmp−1 ≤ ηmp = T.

These new switching times partition the time horizon into subintervals [ηk−1, ηk), k = 1, . . . ,mp.
Define

ωk = (k − 1)modm + 1, k = 1, . . . ,mp,

where “mod” denotes the remainder. Notice that the sequence {ωk}
mp
k=1 evolves as follows:

1, 2, . . . ,m, 1, 2, . . . ,m, . . . , 1, 2, . . . ,m
︸ ︷︷ ︸

p cycles

(62)

Thus, {ωk}
mp
k=1 can be divided into p cycles, where each cycle is a duplicate of the sequence

{1, . . . ,m}.
Suppose that we set τi = ηmi, i = 1, . . . , p, in the switched system (59)-(61). Then the partition

[ηk−1, ηk), k = 1, . . . ,mp, divides each stage [τi−1, τi) into m minor subintervals. Using ωk as the
system mode on the kth minor subinterval, we obtain the following switched system:

ẋ(t) = fωk(t,x(t),u(t), ζ), t ∈ [ηk−1, ηk), k = 1, . . . ,mp, (63)

x(η+mi) = φ
i(x(η−mi), ζ), i = 1, . . . , p− 1, (64)

x(0) = x0. (65)

This situation is illustrated in Figure 4.
Recall that {ωk}

mp
k=1 consists of p cycles, where each cycle is a copy of the sequence {1, . . . ,m}.

Suppose that in each cycle, we select just one value from {1, . . . ,m} and delete the other values
by making the durations of the corresponding subintervals zero (a subinterval can be “deleted” by
making its start and end times coincide). Then the new switched system (63)-(65) will switch mode
at most p−1 times, just like the original switched system (59)-(61). In fact, by judiciously choosing
ηk, k = 1, . . . ,mp, we can make (63)-(65) model (59)-(61) for any switching sequence of length p.
For example, let m = 3, p = 4, and consider the switching sequence {1, 3, 1, 2} in (59)-(61). This
switching sequence can be replicated in (63)-(65) by choosing

0 < η1 = η2 = η3 = η4 = η5 < η6 < η7 = η8 = η9 = η10 < η11 = η12 = T.

Here, subintervals 2, 3, 4, 5, 8, 9, 10, and 12 have been deleted in (63) to produce the switching
sequence {1, 3, 1, 2}.

Unfortunately, the new switched system (63)-(65) is not completely equivalent to (59)-(61).
This is because although (63)-(65) can be used to generate any switching sequence of length p (and
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Fig. 4 Example of {ωk}
mp

k=1
for m = 3 and p = 4.

therefore any switching sequence for the original switched system (59)-(61)), it can also generate
switching sequences of length greater than p. Indeed, there are potentially mp − 1 switches in
(63)-(65). In general, there is no way of ensuring that the optimal values of ηk, k = 1, . . . ,mp,
will result in a switching sequence of length p. Thus, using (63)-(65) to model (59)-(61) is only a
heuristic approach. Nevertheless, this approach often works well in practice, especially when there
are no hard restrictions on the number of mode switches allowed. See [27,53] for more details.

The chief advantage with this heuristic approach is that it converts the original problem, in
which the mode sequence is a discrete optimization variable, into a switching time optimization
problem, which can be solved readily using the time-scaling transformation described in Section 4.
The major disadvantage is that this conversion is not an equivalent transformation, and problems
may arise when the governing switched system involves state jumps (the state jump conditions
in the new system are only imposed at every mth switch; see (64)). The computational strategies
discussed in the next two subsections do not suffer from these limitations.

5.2 Bilevel Optimization Approach

In its most general form, the switched system optimal control problem formulated in Section 2
involves the following decision variables:

• The control function u : [0, T ] → R
r;

• The parameter vector ζ ∈ R
w;

• The switching time vector τ = [τ1, . . . , τp−1]
⊤ ∈ R

p−1; and
• The switching sequence vector v = [v1, . . . , vp]

⊤ ∈ {1, . . . ,m} × · · · × {1, . . . ,m}.

Our task is to choose these decision variables optimally to minimize the cost g0 = g0(u, ζ, τ ,v).
Note that the control function, the parameter vector, and the switching time vector are continuous-
valued decision variables, while the switching sequence is a discrete decision variable.

In the bilevel optimization approach [63,64,68], the switched system optimal control problem
is decomposed into the following bilevel form:

min
v

min
u,ζ,τ

g0(u, ζ, τ ,v). (66)

There are two levels of minimization in (66): in the outer level, the switching sequence is optimized;
in the inner level, the switching sequence is fixed, while the control function, parameter vector,
and subsystem switching times are optimized subject to the canonical constraints (6) and the
continuous inequality constraints (7). Thus, the outer level of (66) involves solving a discrete
optimization problem, while the inner level involves solving a switched system optimal control
problem with fixed mode sequence.

We can rewrite (66) as follows:
min
v

J(v), (67)

where
J(v) = min

u,ζ,τ
g0(u, ζ, τ ,v).
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In (67), the switched system optimal control problem is expressed as a discrete optimization problem
in which the mode sequence is the decision variable, and the value of the cost function is obtained
by fixing the mode sequence and then minimizing with respect to the continuous-valued decision
variables. To compute J(v) for each switching sequence vector v, the control parameterization and
time-scaling techniques described in Sections 3 and 4 can be applied. To minimize J(v) in the outer
level minimization, discrete optimization techniques, such as particle swarm optimization [13] or
the filled function method [65,74], must be applied. For more details, see [63,64,68].

5.3 Binary Relaxation Approach

In this approach, we introduce the following binary decision variables:

zij =

{

1, if mode j is active during stage i,

0, otherwise.
(68)

With these new binary decision variables, the switched system dynamics can be written as follows:

ẋ(t) =
m∑

j=1

zijf
j(t,x(t),u(t), ζ), t ∈ [τi−1, τi), i = 1, . . . , p. (69)

In these new dynamics, the switching sequence is fixed; the active mode during each stage is
governed by the new binary decision variables zij , i = 1, . . . , p, j = 1, . . . ,m.

We now relax these binary decision variables by replacing the 0-1 constraints with equivalent
constraints in the continuous domain. More specifically, we replace zij ∈ {0, 1}, i = 1, . . . , p,
j = 1, . . . ,m, with the new constraints

0 ≤ zij ≤ 1, i = 1, . . . , p, j = 1, . . . ,m, (70)

and
zij(1− zij) ≤ 0, i = 1, . . . , p, j = 1, . . . ,m. (71)

It is clear that (70) and (71) are equivalent to zij ∈ {0, 1}, i = 1, . . . , p, j = 1, . . . ,m. Thus, by
imposing (70) and (71), we can view zij as a continuous-valued decision variable rather than a
discrete variable. This allows zij to be optimized using continuous optimization techniques.

To ensure that only one subsystem is active during each stage, we impose the following addi-
tional constraints:

m∑

j=1

zij = 1, i = 1, . . . , p. (72)

These constraints ensure that for each i = 1, . . . , p, there exists exactly one j′ ∈ {1, . . . ,m}
such that zij′ = 1 and zij = 0 for all j 6= j′. Thus, imposing (70)-(72) guarantees that zij is
consistent with the original definition given in (68). The new optimal control problem involves
choosing zij , i = 1, . . . , p, j = 1, . . . ,m, together with the original decision variables u, ζ, and τ ,
to minimize the system cost subject to the new dynamics (69). In principle, this new problem—a
switched system optimal control problem with fixed mode sequence—can be solved using the control
parameterization and time-scaling techniques described in Sections 3 and 4. Note, however, that
standard gradient-based optimization methods will usually struggle with (71), as these constraints
essentially restrict the feasible region to a disjoint set. Thus, in practice, the exact penalty method
developed in [71–73] (see also Section 3.2) must be deployed to handle these constraints.

As an alternative to (71), the following equality constraints can be used:

m∑

j=1

j2zij −

{ m∑

j=1

jzij

}2

= 0, i = 1, . . . , p. (73)

It can be shown (see [34,62]) that constraints (70), (72), and (73) imply zij ∈ {0, 1}, i = 1, . . . , p,
j = 1, . . . ,m.
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Another alternative to (71) is

m∑

j=1

zij(j
2 − j + 1

3 )−

{ m∑

j=1

zij(j −
1
2 )

}2

=
1

12
, i = 1, . . . , p. (74)

These equality constraints were introduced in [12] to solve a non-smooth optimal control problem
arising in gradient-elution chromatography. It can be shown that imposing (74) together with (70)
and (72) ensures that zij is binary. As with (71), the exact penalty method is usually needed to
handle constraints (73) and (74); standard optimization algorithms are generally not sufficient.

To conclude this section, we mention that there is another relaxation technique in the literature
based on control integral approximations that can also be applied to handle the binary decision
variables zij ; for details, see [16,17].

6 Applications

In Sections 3-5, we discussed several computational strategies for solving switched system opti-
mal control problems. We now demonstrate the real-world applicability of the switched system
framework by presenting a number of practical switched system optimal control models.

6.1 Switched-Capacitor DC/DC Power Converters

A switched-capacitor DC/DC power converter is a small electronic device, consisting primarily of
switches and capacitors, that generates different DC voltages from a single DC source. Such power
converters are commonly used in mobile electronic devices such as laptop computers and cellular
phones.

The circuit topology in a switched-capacitor DC/DC power converter is governed by the switch
configuration. For each switch configuration, some of the capacitors act as the power supply and de-
liver energy to the load, while the remaining capacitors are charged by the input source. When the
circuit topology is changed, the capacitors’ roles are reversed: those capacitors that were previously
storing energy begin to supply energy to the load, while those capacitors that were previously sup-
plying energy to the load begin to store energy. The power converter operates by regularly switching
between the different circuit topologies to produce a steady output voltage. An introduction to the
operation of switched-capacitor DC/DC power converters is given in [19].

Consider a switched-capacitor DC/DC power converter with m circuit topologies and p op-
erating stages. The jth circuit topology can be modelled mathematically by the following linear
system:

ẋ(t) = Aj(RL)x(t) +Bj(RL)σ,

where x(t) ∈ R
n contains the capacitor voltages, σ ∈ R

w contains the DC input voltages, RL ∈ R

is the load resistance, and Aj : R → R
n×n and Bj : R → R

n×w are given matrix-valued functions
of the load resistance (these functions can be derived using Kirchhoff’s circuit laws).

The output voltage delivered by the power converter during the jth circuit topology is given
by

y(t) = Cj(RL)x(t) +Dj(RL)σ,

where Cj : R → R
1×n and Dj : R → R

1×w are given matrix-valued functions of the load resistance.
Let τi, i = 1, . . . , p − 1, denote the topology switching times, with τ0 = 0 and τp = T . Then

the operation of the switched-capacitor DC/DC power converter can be described by the following
switched system:

ẋ(t) = Avi(RL)x(t) +Bvi(RL)σ

y(t) = Cvi(RL)x(t) +Dvi(RL)σ

}

t ∈ [τi−1, τi), i = 1, . . . , p, (75)

where vi ∈ {1, . . . ,m} denotes the active topology during the ith stage. The initial conditions are

x(0) = x0, (76)
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where x0 ∈ R
n is a given vector. Furthermore, because topology switches are accompanied by

instantaneous voltage leaks, there is a state jump occurring at each switching time:

x(τ+i ) = x(τ−i ) + φi(x(τ−i )), i = 1, . . . , p− 1, (77)

where φi : Rn → R
n, i = 1, . . . , p− 1, are given functions describing the magnitudes of the voltage

leaks. A method for determining these functions is described in [18].
When designing a control policy for a switched-capacitor DC/DC power converter, the following

quantities should be considered:

(1) Output voltage ripple (the power converter should deliver a steady voltage to the attached load);
(2) Output voltage sensitivity with respect to the load resistance (changing the attached load should

not cause large changes in the output voltage); and
(3) Output voltage sensitivity with respect to the input voltage (random fluctuations in the input

voltage should not cause large changes in the output voltage).

Based on these criteria, we define the following cost function:

g0 = α1

{

sup
t∈[0,T ]

y(t)− inf
t∈[0,T ]

y(t)

︸ ︷︷ ︸

Output voltage ripple

}

+ α2 sup
t∈[0,T ]

∣
∣
∣
∣

∂y(t)

∂RL

∣
∣
∣
∣

︸ ︷︷ ︸

Output sensitivity

+α3 sup
t∈[0,T ]

∥
∥
∥
∥

∂y(t)

∂σ

∥
∥
∥
∥

︸ ︷︷ ︸

Output sensitivity

(78)

where α1, α2, and α3 are given weights and ‖ · ‖ denotes an appropriate norm.
The problem is to minimize (78) subject to the switched system (75)-(77). The decision variables

in this problem are the switching times and the switching sequence. See [18,44] for more details,
including optimization algorithms based on the time-scaling transformation.

6.2 Aquaculture Operations

Aquaculture farming refers to the process of rearing seafood (e.g. tuna, mussels, salmon, crus-
taceans) for human consumption. In this section, we consider the aquaculture farming of shrimp.
The aim is to determine the optimal times at which to harvest shrimp from an aquaculture pond
so that total revenue from the aquaculture operation is maximized. As we will see, this problem
can be formulated as an impulsive optimal control problem.

Let x1(t) denote the number of shrimp in the pond at time t. Furthermore, let x2(t) denote the
average weight of shrimp (in grams) at time t. Then according to [70], the state variables x1 and
x2 can be modelled by the following differential equations:

ẋ1(t) = −α1x1(t), (79)

ẋ2(t) = α2 − α3x1(t)x2(t), (80)

where α1, α2, and α3 are model constants. Equation (79) models shrimp mortality by an exponential
decay process, while equation (80) expresses the shrimp growth rate as a function of the biomass
in the pond (the more shrimp in the pond, the more competition for food).

The initial conditions for the state variables are

x1(0) = x0
1, x2(0) = x0

2, (81)

where x0
1 > 0 and x0

2 > 0 are given constants.
Let τi denote the ith harvest time. Furthermore, let ζi denote the fraction of shrimp stock

extracted at the ith harvest. Then

x1(τ
+
i ) = x1(τ

−
i )− ζix1(τ

−
i ), i = 1, . . . , p, (82)

and
x2(τ

+
i ) = x2(τ

−
i ), i = 1, . . . , p. (83)

Equation (82) is a state jump condition: it indicates that the shrimp population decreases instan-
taneously at each harvest time when shrimp are removed from the pond. Equation (83) simply
states that the average weight of shrimp is unchanged by the ith harvest.
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The decision variables τi, i = 1, . . . , p, and ζi, i = 1, . . . , p, satisfy the following constraints:

0 ≤ τ1 ≤ τ2 ≤ · · · ≤ τp (84)

and
0 ≤ ζi ≤ 1, i = 1, . . . , p. (85)

The revenue obtained over the production cycle [0, τp] is given by

g0 =

p
∑

i=1

{
βζix1(τ

−
i )x2(τ

−
i )− h

}
, (86)

where β is the price of shrimp (in dollars per gram) and h is the fixed cost of a single harvest (in
dollars). The problem is to choose the harvest times τi, i = 1, . . . , p, and the harvest fractions ζi,
i = 1, . . . , p, to maximize the total revenue (86) subject to the dynamic system (79)-(83) and the
constraints (84) and (85).

Technically speaking, since its dynamics do not change at the harvest times, system (79)-(83)
is an impulsive system rather than a switched system. Nevertheless, such impulsive systems can
be viewed as special cases of the general switched system formulation given in Section 2.

The above optimal control problem was solved using the time-scaling transformation in ref-
erences [31,70]. Later, in references [22,23], a neighbouring extremal approach was developed to
determine an optimal feedback control policy. A variation of this optimal control problem in which
the price of shrimp is defined in terms of a piecewise-constant function of the average shrimp weight
is considered in reference [7].

6.3 1,3-Propanediol Production

1,3-Propanediol is an organic compound widely used in the production of industrial polymers. In
this section, we consider a fed-batch fermentation process for manufacturing 1,3-propanediol via
glycerol bio-dissimilation. This process consists of two modes: feeding mode, during which glycerol
is added continuously to the fermentor, and batch mode, during which the glycerol feed is stopped.
The fed-batch process switches back and forth between the batch and feeding modes to maintain
a suitable environment for cell growth.

We consider the fed-batch model described in reference [35]. The state vector in this model is
x(t) = [x1(t), x2(t), x3(t), x4(t), x5(t)]

⊤, where:

• x1(t) is the concentration of biomass at time t;
• x2(t) is the concentration of glycerol at time t;
• x3(t) is the concentration of 1,3-propanediol at time t;
• x4(t) is the concentration of acetic acid at time t; and
• x5(t) is the concentration of ethanol at time t.

In batch mode, the mass balance equations are

ẋ1(t) = β1(x(t))x1(t), (87)

ẋ2(t) = −β2(x(t))x1(t), (88)

ẋ3(t) = β3(x(t))x1(t), (89)

ẋ4(t) = β4(x(t))x1(t), (90)

ẋ5(t) = β5(x(t))x1(t), (91)

where

β1(x(t)) =
∆1x2(t)

x2(t) + α1

5∏

l=2

{

1−
xl(t)

x∗
l

}κl

,

βl(x(t)) = νl + zlβ1(x(t)) +
∆lx2(t)

x2(t) + αl

, l = 2, 3, 4,

β5(x(t)) = β2(x(t))

{
c1

c2 + β1(x(t))x2(t)
+

c3
c4 + β1(x(t))x2(t)

}

.
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Here, κ2 = 1 and κ3 = κ4 = κ5 = 3, while ∆l, αl, x
∗
l , νl, zl, and c1, c2, c3, and c4 are model

constants. The problem of determining optimal estimates for these constants is considered in [38].
In feeding mode, the mass balance equations are

ẋ1(t) = β1(x(t))x1(t)−D(t, u(t))x1(t), (92)

ẋ2(t) = D(t, u(t))

{
c0

1 + ρ
− x2(t)

}

− β2(x(t))x1(t), (93)

ẋ3(t) = β3(x(t))x1(t)−D(t, u(t))x3(t), (94)

ẋ4(t) = β4(x(t))x1(t)−D(t, u(t))x4(t), (95)

ẋ5(t) = β5(x(t))x1(t)−D(t, u(t))x5(t), (96)

where u(t) is the glycerol feeding rate at time t, ρ is the ratio of the feed velocity of alkali to the
feed velocity of glycerol, c0 is the initial concentration of glycerol feed, and

D(t, u(t)) =
(1 + ρ)u(t)

V (t)
,

V (t) = V0 +

∫ t

0

(1 + ρ)u(s)ds.

Because of physical limitations, the rate at which glycerol is added to the fermentor during feeding
mode is subject to the following bound constraints:

a ≤ u(t) ≤ b, t ∈ [0, T ],

where T is the terminal time and a and b are given constants such that 0 < a < b.
The problem is to maximize x3(T ), the yield of 1,3-propanediol at the terminal time, subject

to the batch and feeding mode dynamics. The decision variables in this problem are the times at
which the system switches between batch and feeding modes (i.e. the times at which the system
dynamics switch between (87)-(91) and (92)-(96)), as well as the feeding rate of glycerol during
the feeding mode. See [35,37] for more details.

6.4 Diesel-Electric Submarines

We consider the dynamic model of a diesel-electric submarine presented in [50]. The submarine has
a battery-powered propulsion system and three diesel generators for recharging the battery. Each
generator has two operating modes: normal mode and supercharged mode. Supercharged mode
gives a faster recharge rate, but creates more noise. The aim is to find an optimal strategy for
running the generators so that adequate charge in the battery is maintained, the submarine travels
a required distance, and the noise generated by the submarine is minimized.

The charge state of the submarine’s battery is described by the following differential equation:

ẋ(t) = R(x(t), u1(t))−D(u1(t), u3(t)), t ∈ [0, T ], (97)

x(0) = x0, (98)

where x(t) is the charge state of the battery at time t, u1(t) is the fraction of full mechanical power
produced by the generators at time t, u2(t) is the generator noise level at time t, u3(t) is the speed
of the submarine at time t, R : R × R → R is the recharge rate, D : R × R → R is the discharge
rate, T is the journey time, and x0 is the initial charge.

The battery recharge rate depends on the charge state of the battery and the amount of power
being produced by the generators:

R(x(t), u1(t)) = (2.0× 104)
u1(t)

x(t) + 100
.

The battery discharge rate depends primarily on the speed of the submarine:

D(u1(t), u3(t)) =

{
1

120u
2
3(t) + 8, if u1(t) 6= 0,

1
80u

2
3(t) + 5, if u1(t) = 0.
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Operating Mode u1 u2

Discharging (generators off) 0 0

Recharging (1 normal) 0.2564 unoise

Recharging (1 supercharged) 0.3333 1.5× unoise

Recharging (2 normal) 0.5128 2.0× unoise

Recharging (2 supercharged) 0.6666 3.0× unoise

Recharging (3 normal) 0.7692 3.0× unoise

Recharging (3 supercharged) 1.0 4.5× unoise

Table 1 The possible operating modes for the submarine described in Section 6.4. Here, unoise is a given constant
representing the minimum noise level.

Controls u1 : [0, T ] → R and u2 : [0, T ] → R govern the operating mode of the submarine. There
are 7 modes in total, the details of which are given in Table 1.

Note that u1 and u2 are discrete-valued control variables that assume values in a discrete set:
[
u1(t)
u2(t)

]

∈

{[
0
0

]

,

[
0.2564
unoise

]

,

[
0.3333
1.5unoise

]

,

[
0.5128
2unoise

]

,

[
0.6666
3unoise

]

,

[
0.7692
3unoise

]

,

[
1

4.5unoise

]}

. (99)

Thus, system (97)-(98) can be viewed as a switched system in which each discrete control vector
on the right-hand side of (99) corresponds to a different system mode.

Physical constraints on the submarine’s propulsion system mean that the submarine’s speed is
limited to between 5km/h and 60km/h:

5 ≤ u3(t) ≤ 60, t ∈ [0, T ]. (100)

Moreover, sufficient battery charge must be maintained throughout the journey:

xmin ≤ x(t) ≤ xmax, t ∈ [0, T ], (101)

where xmin and xmax are given constants. To ensure the submarine travels a required distance of
L kilometers, we impose the following canonical equality constraint:

∫ T

0

u3(t)dt = L. (102)

Given weights α1 > 0 and α2 > 0, the optimal control problem is to choose u1, u2, and u3 to
minimize the cost function

g0 = α1

∫ T

0

(x(t) − 100)2dt

︸ ︷︷ ︸

Deviation from full charge

+α2

∫ T

0

ln(u2(t) + 1)dt

︸ ︷︷ ︸

Noise level

subject to the dynamic system (97)-(98) and the constraints (99)-(102). This optimal discrete-
valued control problem can be formulated as a switched system optimal control problem; see
Section 2 for details. Solution algorithms for solving this problem based on the time-scaling trans-
formation are described in [11,50].

6.5 Sensor Scheduling

Consider a process described by the following system of stochastic differential equations:

dx(t) = A(t)x(t)dt+B(t)dz(t), t ∈ [0, T ], (103)

x(0) = x0, (104)

where x(t) ∈ R
n is the state of the process at time t; x0 ∈ R

n is a Gaussian random vector
with mean x̄0 ∈ R

n and covariance matrix P0 ∈ R
n×n; the process {z(t), t ∈ [0, T ]} is an R

s-
valued Brownian motion with mean zero and covariance matrix Q; and A : [0, T ] → R

n×n and
B : [0, T ] → R

n×s are given matrix-valued functions.
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We suppose that there are m sensors available for making observations of the state x(t). These
observations are corrupted by noise. Our goal is to use the noisy observations to construct an
optimal estimate of x(t).

Only one of the m sensors can be active at any one time. Let u : [0, T ] → {1, . . . ,m} be such
that u(t) = j if sensor j is active at time t. This function is called the sensor schedule.

The observation process for (103)-(104) satisfies the following system of stochastic differential
equations:

dy(t) =

m∑

i=1

{Ci(t)x(t)dt +Di(t)dwi(t)}χ{i}(u(t)), t ∈ [0, T ],

y(0) = 0,

where y(t) ∈ R
d is the observed process at time t; each {wi(t), t ∈ [0, T ]} is an R

k-valued Brownian
motion with mean zero and covariance matrix Ri; Ci : [0, T ] → R

d×n and Di : [0, T ] → R
d×k are

given matrix-valued functions; and

χ{i}(u(t)) =

{

1, if u(t) = i,

0, otherwise.

Now, let

R̃−1
i (t) =

[
Di(t)RiDi(t)

⊤
]−1

.

Our aim is to use y(t) to form an estimate of x(t). Under suitable assumptions (see [2,5]), it can
be shown that the optimal mean-square estimate of x(t) is x̂(t), where

dx̂(t) =

{

A(t)− P (t)

m∑

i=1

Ci(t)
⊤R̃−1

i (t)Ci(t)χ{i}(u(t))

}

x̂(t)dt

+

{

P (t)
m∑

i=1

Ci(t)
⊤R̃−1

i (t)χ{i}(u(t))

}

dy(t),

x̂(0) = x̄0,

and the error covariance matrix P (t) satisfies the following Riccati differential equation:

Ṗ (t) = A(t)P (t) + P (t)A(t)⊤ +B(t)QB(t)⊤ −

m∑

i=1

P (t)Ci(t)
⊤R̃−1

i (t)Ci(t)P (t)χ{i}(u(t)), (105)

P (0) = P0. (106)

The estimation accuracy can be improved by choosing a sensor schedule that makes the error
covariance matrix small. This motivates the following optimal control problem: Choose the sensor
schedule u : [0, T ] → {1, . . . ,m} to minimize the cost function

g0 = trace{P (T )}+

∫ T

0

trace{P (t)}dt

subject to the dynamic system (105)-(106). This is an optimal discrete-valued control problem.
As mentioned previously, such problems are special cases of the general switched system optimal
control model described in Section 2. See [26,63] for more details.

7 Concluding Remarks

This paper has reviewed the latest computational methods based on control parameterization
and the time-scaling transformation for solving switched system optimal control problems with
nonlinear subsystem dynamics and nonlinear state constraints. We have considered three types of
switched system: those in which both the mode sequence and the switching times are fixed; those in
which the mode sequence is fixed, but the switching times are input variables; and those in which
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both the mode sequence and the switching times are input variables. These three switched system
models are sufficiently broad to encapsulate many of the real-world switched systems arising in
practice.

There is, however, another important type of switched system that is not discussed in this
paper—the so-called internally-forced switched system in which the switching mechanism is gov-
erned by a set of switching conditions [69]. These switching conditions are usually expressed in
terms of equations involving the state variables; the system switches from one mode to another when
these equations are satisfied. Consequently, the switching times in an internally-forced switched
system are implicit functions of the control and parameter vectors—changing these vectors changes
the state trajectory, which in turn changes the times at which the switching conditions are satisfied.
This switching mechanism is similar to the termination mechanisms studied in [21,30,32], which
are governed by state-dependent stopping criteria.

Internally-forced switched systems arise in many applications, including robots [9], subway train
control [55], cancer chemotherapy [47], bioreactors [36], and voice-coil motors [14]. Reference [25]
describes a computational method, based on the time-scaling transformation, for generating the
state trajectory of an internally-forced switched system. However, this method is only for solving the
system, not optimizing it. Strictly speaking, the standard control parameterization and time-scaling
techniques are not applicable to optimal control problems governed by internally-forced switched
systems, as the dynamics in such systems depend discontinuously on the system state. Nevertheless,
many researchers, including the authors of this paper, have ignored this restriction and applied
control parameterization and the time-scaling transformation directly to optimal control problems
subject to internally-forced switched systems; see [41,47,64] for examples. An interesting avenue
for future research would be to study the ramifications of this (potentially invalid) approach. New
control parameterization and time-scaling techniques should be developed to specifically cater for
internally-forced switched systems.
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