182 research outputs found

    Simulation study of copper(I) and copper(II) species in ZSM-5 zeolite

    Get PDF
    Low energy configurations of CuI and CuII species in the ZSM-5 zeolite, probed by energy minimisation techniques, are found to be bound strongly to framework aluminium or copper species

    Defect structures and migration mechanisms in oxide pyrochlores

    Get PDF
    Using computer simulation techniques the defect structure and oxygen ion migration mechanism of oxide pyrochlores (eg. Gd2Zr2O7) was investigated in order to explain the decreased activation enthalpy for oxygen ion conductivity as a function of order. Shell model potentials were found to be necessary in order to obtain sufficiently accurate physical properties for the pyrochlore compound. The oxygen Frenkel defect consisting of ‘a split 48f vacancy’ and 8b interstitial appeared to be the most stable instrinsic defect, but vacancies related to extended defect structures may play an important role in the diffusion mechanism too. The migration mechanism of oxygen ions is mainly based on 48f-48f jumps and involve 0.9 eV barrier energy, comparable with the experimental activation enthalpies of 70–85 kJ/mol

    Deep vs shallow nature of oxygen vacancies and consequent n -type carrier concentrations in transparent conducting oxides

    Get PDF
    The source of n -type conductivity in undoped transparent conducting oxides has been a topic of debate for several decades. The point defect of most interest in this respect is the oxygen vacancy, but there are many conflicting reports on the shallow versus deep nature of its related electronic states. Here, using a hybrid quantum mechanical/molecular mechanical embedded cluster approach, we have computed formation and ionization energies of oxygen vacancies in three representative transparent conducting oxides: In 2 O 3 , SnO 2 , and ZnO. We find that, in all three systems, oxygen vacancies form well-localized, compact donors. We demonstrate, however, that such compactness does not preclude the possibility of these states being shallow in nature, by considering the energetic balance between the vacancy binding electrons that are in localized orbitals or in effective-mass-like diffuse orbitals. Our results show that, thermodynamically, oxygen vacancies in bulk In 2 O 3 introduce states above the conduction band minimum that contribute significantly to the observed conductivity properties of undoped samples. For ZnO and SnO 2 , the states are deep, and our calculated ionization energies agree well with thermochemical and optical experiments. Our computed equilibrium defect and carrier concentrations, however, demonstrate that these deep states may nevertheless lead to significant intrinsic n -type conductivity under reducing conditions at elevated temperatures. Our study indicates the importance of oxygen vacancies in relation to intrinsic carrier concentrations not only in In 2 O 3 , but also in SnO 2 and ZnO

    Screening Divalent Metals for A- and B-Site Dopants in LaFeO3

    Get PDF
    Doping LaFeO3, a mixed ionic electronic conductor, can serve to increase its ionic and electronic conductivity, as observed in La1–xSrxCo1–yFeyO3−δ (LSCF), a promising intermediate temperature solid oxide fuel cell (IT-SOFC) cathode material. In this study, ab initio methods have been employed to assess the viability of a range of divalent A- and B-site dopants for promoting ionic and electronic conductivity, through calculating solution energies and binding energies to charge compensating species. For the A-site, we find that all alkali earth metals considered promote increased conductivity properties, but strontium and calcium have the lowest solution energies and therefore will be suitable dopants, in full agreement with experiment. Surprisingly, we find manganese, which has typically been assumed to dope exclusively on the B-site, to have significant probability, on the basis of energetic considerations, to occupy the A-site and be equally as energetically favorable as the traditional strontium dopant under certain conditions. For the B-site, cobalt and nickel were found to be suitable dopants, promoting ionic and electronic conductivity, due to the variable oxidation state of transition metals. Magnesium also increases conductivity as a B-site dopant in contrast with the other alkali earth dopants studied, which favor the A-site. By considering two compensation mechanisms, O2– vacancy and hole compensation, we show both oxygen vacancies and holes will be promoted in the doped system, in agreement with the experimentally observed mixed ionic electronic conducting properties of doped systems, including LSCF

    Defects and Oxide Ion Migration in the Solid Oxide Fuel Cell Cathode Material LaFeO3

    Get PDF
    LaFeO3, a mixed ionic electronic conductor, is a promising cathode material for intermediate temperature solid oxide fuel cells (IT-SOFC). Key to understanding the electronic and ion conducting properties is the role of defects. In this study ab initio and static lattice methods have been employed to calculate formation energies of the full range of intrinsic defects—vacancies, interstitials, and antisite defects—under oxygen rich and oxygen poor conditions, to establish which, if any, are likely to occur and the effect these will have on the properties of the material. Under oxygen rich conditions, we find that the defect chemistry favors p-type conductivity, in excellent agreement with experiment, but contrary to previous studies, we find that cation vacancies play a crucial role. In oxygen poor conditions O2– vacancies dominate, leading to n-type conductivity. Finally, static lattice methods and density functional theory were used to calculate activation energies of oxide ion migration through this material. Three pathways were investigated between the two inequivalent oxygen sites, O1 and O2; O2–O2, O1–O2, and O1–O1, with O2–O2 giving the lowest activation energy of 0.58 eV, agreeing well with experimental results and previous computational studies

    Intrinsic point defects and the n- and p-type dopability of the narrow gap semiconductors GaSb and InSb

    Get PDF
    The presence of defects in the narrow gap semiconductors GaSb and InSb affects their dopability and hence applicability for a range of optoelectronic applications. Here, we report hybrid density functional theory (DFT)-based calculations of the properties of intrinsic point defects in the two systems, including spin-orbit coupling effects, which influence strongly their band structures. With the hybrid DFT approach adopted, we obtain excellent agreement between our calculated band dispersions and structural, elastic, and vibrational properties and available measurements. We compute point defect formation energies in both systems, finding that antisite disorder tends to dominate, apart from in GaSb under certain conditions, where cation vacancies can form in significant concentrations. Calculated self-consistent Fermi energies and equilibrium carrier and defect concentrations confirm the intrinsic n- and p-type behavior of both materials under anion-rich and anion-poor conditions. Moreover, by computing the compensating defect concentrations due to the presence of ionized donors and acceptors, we explain the observed dopability of GaSb and InS

    Mechanism of CO 2 conversion to methanol over Cu(110) and Cu(100) surfaces

    Get PDF
    Density functional methods are applied to explore the reaction mechanism for CO2 hydrogenation to methanol over low-index Cu surfaces, namely Cu(110) and Cu(100). A detailed reaction network is obtained, examining several different possible mechanistic routes, including methanol formation via formate and hydrocarboxyl bound intermediates, the role of formaldehyde and formic acid as stable intermediary reaction products, as well as exploring the possibility of CO2 dissociation and subsequent hydrogenation of the resultant CO. We find that, in contrast to the dominant Cu(111) facet, the Cu(110) and Cu(100) surfaces facilitate a moderate extent of CO2 activation, which results in lower activation barriers for initial elementary processes involving CO2 hydrogenation and dissociation, opening up reaction pathways considered unfeasible for Cu(111). Consequently, a wider variety of potential mechanistic routes to achieve methanol synthesis is observed and compared to Cu(111), illustrating the essential role of the Cu surface structure in catalytic activity, and providing insights into the mechanism of CO2 hydrogenation over Cu-based catalysts. In providing a thorough and detailed exploration of all of the possible mechanistic pathways for CO2 conversion to methanol, the present work represents a reference point for future studies investigating systems representative of the industrial Cu/ZnO catalyst, enabling a clear identification of the limitations of unsupported Cu catalysts, and thus allowing a more complete understanding of the role of the support material. This journal i

    Quantum Mechanical/Molecular Mechanical (QM/MM) Approaches

    Get PDF
    Computational modeling techniques are now standard tools in solid‐state science. They are used routinely to model and predict structures, to investigate defect, transport, and spectroscopic properties of solids, to simulate sorption and diffusion, to develop models for nucleation and growth of solids, and increasingly to model and predict reaction mechanisms. They are applied to bulk solids, surfaces, and nanostructures, and successful applications are reported for all major classes of solid: metals, semiconductors, inorganic and ceramic materials, and molecular crystals. Modeling methods are now indeed tools that are used to guide, interpret, and predict experiment

    Electron Counting in Solids: Oxidation States, Partial Charges, and Ionicity

    Get PDF
    The oxidation state of an element is a practically useful concept in chemistry. IUPAC defines it as “the charge an atom might be imagined to have when electrons are counted according to an agreed-upon set of rules”.(1) Once the composition of a compound is known, a trained chemist will immediately infer the oxidation states of its components, and in turn anticipate the structural, electronic, optical and magnetic properties of the material. This is a powerful heuristic tool
    corecore