525 research outputs found
Testing quantum correlations in a confined atomic cloud by scattering fast atoms
We suggest measuring one-particle density matrix of a trapped ultracold
atomic cloud by scattering fast atoms in a pure momentum state off the cloud.
The lowest-order probability of the inelastic process, resulting in a pair of
outcoming fast atoms for each incoming one, turns out to be given by a Fourier
transform of the density matrix. Accordingly, important information about
quantum correlations can be deduced directly from the differential scattering
cross-section. A possible design of the atomic detector is also discussed.Comment: 5 RevTex pages, no figures, submitted to PR
Structure factor of polymers interacting via a short range repulsive potential: application to hairy wormlike micelles
We use the Random Phase Approximation (RPA) to compute the structure factor,
S(q), of a solution of chains interacting through a soft and short range
repulsive potential V. Above a threshold polymer concentration, whose magnitude
is essentially controlled by the range of the potential, S(q) exhibits a peak
whose position depends on the concentration. We take advantage of the close
analogy between polymers and wormlike micelles and apply our model, using a
Gaussian function for V, to quantitatively analyze experimental small angle
neutron scattering profiles of semi-dilute solutions of hairy wormlike
micelles. These samples, which consist in surfactant self-assembled flexible
cylinders decorated by amphiphilic copolymer, provide indeed an appropriate
experimental model system to study the structure of sterically interacting
polymer solutions
Nonquasiparticle states in half-metallic ferromagnets
Anomalous magnetic and electronic properties of the half-metallic
ferromagnets (HMF) have been discussed. The general conception of the HMF
electronic structure which take into account the most important correlation
effects from electron-magnon interactions, in particular, the spin-polaron
effects, is presented. Special attention is paid to the so called
non-quasiparticle (NQP) or incoherent states which are present in the gap near
the Fermi level and can give considerable contributions to thermodynamic and
transport properties. Prospects of experimental observation of the NQP states
in core-level spectroscopy is discussed. Special features of transport
properties of the HMF which are connected with the absence of one-magnon
spin-flip scattering processes are investigated. The temperature and magnetic
field dependences of resistivity in various regimes are calculated. It is shown
that the NQP states can give a dominate contribution to the temperature
dependence of the impurity-induced resistivity and in the tunnel junction
conductivity. First principle calculations of the NQP-states for the prototype
half-metallic material NiMnSb within the local-density approximation plus
dynamical mean field theory (LDA+DMFT) are presented.Comment: 27 pages, 9 figures, Proceedings of Berlin/Wandlitz workshop 2004;
Local-Moment Ferromagnets. Unique Properties for Moder Applications, ed. M.
Donath, W.Nolting, Springer, Berlin, 200
Transfer Matrices and Partition-Function Zeros for Antiferromagnetic Potts Models. V. Further Results for the Square-Lattice Chromatic Polynomial
We derive some new structural results for the transfer matrix of
square-lattice Potts models with free and cylindrical boundary conditions. In
particular, we obtain explicit closed-form expressions for the dominant (at
large |q|) diagonal entry in the transfer matrix, for arbitrary widths m, as
the solution of a special one-dimensional polymer model. We also obtain the
large-q expansion of the bulk and surface (resp. corner) free energies for the
zero-temperature antiferromagnet (= chromatic polynomial) through order q^{-47}
(resp. q^{-46}). Finally, we compute chromatic roots for strips of widths 9 <=
m <= 12 with free boundary conditions and locate roughly the limiting curves.Comment: 111 pages (LaTeX2e). Includes tex file, three sty files, and 19
Postscript figures. Also included are Mathematica files data_CYL.m and
data_FREE.m. Many changes from version 1: new material on series expansions
and their analysis, and several proofs of previously conjectured results.
Final version to be published in J. Stat. Phy
Origins of the Ambient Solar Wind: Implications for Space Weather
The Sun's outer atmosphere is heated to temperatures of millions of degrees,
and solar plasma flows out into interplanetary space at supersonic speeds. This
paper reviews our current understanding of these interrelated problems: coronal
heating and the acceleration of the ambient solar wind. We also discuss where
the community stands in its ability to forecast how variations in the solar
wind (i.e., fast and slow wind streams) impact the Earth. Although the last few
decades have seen significant progress in observations and modeling, we still
do not have a complete understanding of the relevant physical processes, nor do
we have a quantitatively precise census of which coronal structures contribute
to specific types of solar wind. Fast streams are known to be connected to the
central regions of large coronal holes. Slow streams, however, appear to come
from a wide range of sources, including streamers, pseudostreamers, coronal
loops, active regions, and coronal hole boundaries. Complicating our
understanding even more is the fact that processes such as turbulence,
stream-stream interactions, and Coulomb collisions can make it difficult to
unambiguously map a parcel measured at 1 AU back down to its coronal source. We
also review recent progress -- in theoretical modeling, observational data
analysis, and forecasting techniques that sit at the interface between data and
theory -- that gives us hope that the above problems are indeed solvable.Comment: Accepted for publication in Space Science Reviews. Special issue
connected with a 2016 ISSI workshop on "The Scientific Foundations of Space
Weather." 44 pages, 9 figure
Heavy quarkonium: progress, puzzles, and opportunities
A golden age for heavy quarkonium physics dawned a decade ago, initiated by
the confluence of exciting advances in quantum chromodynamics (QCD) and an
explosion of related experimental activity. The early years of this period were
chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in
2004, which presented a comprehensive review of the status of the field at that
time and provided specific recommendations for further progress. However, the
broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles
could only be partially anticipated. Since the release of the YR, the BESII
program concluded only to give birth to BESIII; the -factories and CLEO-c
flourished; quarkonium production and polarization measurements at HERA and the
Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the
deconfinement regime. All these experiments leave legacies of quality,
precision, and unsolved mysteries for quarkonium physics, and therefore beg for
continuing investigations. The plethora of newly-found quarkonium-like states
unleashed a flood of theoretical investigations into new forms of matter such
as quark-gluon hybrids, mesonic molecules, and tetraquarks. Measurements of the
spectroscopy, decays, production, and in-medium behavior of c\bar{c}, b\bar{b},
and b\bar{c} bound states have been shown to validate some theoretical
approaches to QCD and highlight lack of quantitative success for others. The
intriguing details of quarkonium suppression in heavy-ion collisions that have
emerged from RHIC have elevated the importance of separating hot- and
cold-nuclear-matter effects in quark-gluon plasma studies. This review
systematically addresses all these matters and concludes by prioritizing
directions for ongoing and future efforts.Comment: 182 pages, 112 figures. Editors: N. Brambilla, S. Eidelman, B. K.
Heltsley, R. Vogt. Section Coordinators: G. T. Bodwin, E. Eichten, A. D.
Frawley, A. B. Meyer, R. E. Mitchell, V. Papadimitriou, P. Petreczky, A. A.
Petrov, P. Robbe, A. Vair
Non-neutralizing SARS-CoV-2 N-terminal domain antibodies protect mice against severe disease using Fc-mediated effector functions
Antibodies perform both neutralizing and non-neutralizing effector functions that protect against certain pathogen-induced diseases. A human antibody directed at the SARS-CoV-2 Spike N-terminal domain (NTD), DH1052, was recently shown to be non-neutralizing, yet it protected mice and cynomolgus macaques from severe disease. The mechanisms of NTD non-neutralizing antibody-mediated protection are unknown. Here we show that Fc effector functions mediate NTD non-neutralizing antibody (non-nAb) protection against SARS-CoV- 2 MA10 viral challenge in mice. Though non-nAb prophylactic infusion did not suppress infectious viral titers in the lung as potently as neutralizing antibody (nAb) infusion, disease markers including gross lung discoloration were similar in nAb and non-nAb groups. Fc functional knockout substitutions abolished non-nAb protection and increased viral titers in the nAb group. Fc enhancement increased non-nAb protection relative to WT, supporting a positive association between Fc functionality and degree of protection from SARS-CoV-2 infection. For therapeutic administration of antibodies, non-nAb effector functions contributed to virus suppression and lessening of lung discoloration, but the presence of neutralization was required for optimal protection from disease. This study demonstrates that non-nAbs can utilize Fc-mediated mechanisms to lower viral load and prevent lung damage due to coronavirus infection
- âŠ