1,682 research outputs found
Correlated Errors in Quantum Error Corrections
We show that errors are not generated correlatedly provided that quantum bits
do not directly interact with (or couple to) each other. Generally, this
no-qubits-interaction condition is assumed except for the case where two-qubit
gate operation is being performed. In particular, the no-qubits-interaction
condition is satisfied in the collective decoherence models. Thus, errors are
not correlated in the collective decoherence. Consequently, we can say that
current quantum error correcting codes which correct single-qubit-errors will
work in most cases including the collective decoherence.Comment: no correction, 3 pages, RevTe
Shor-Preskill Type Security-Proofs for Concatenated Bennett-Brassard 1984 Quantum Key Distribution Protocol
We discuss long code problems in the Bennett-Brassard 1984 (BB84) quantum key
distribution protocol and describe how they can be overcome by concatenation of
the protocol. Observing that concatenated modified Lo-Chau protocol finally
reduces to the concatenated BB84 protocol, we give the unconditional security
of the concatenated BB84 protocol.Comment: 4 pages, RevTe
Patterns of Interactions in Complex Social Networks Based on Coloured Motifs Analysis
Coloured network motifs are small subgraphs that enable to discover and interpret the patterns of interaction within the complex networks. The analysis of three-nodes motifs where the colour of the node reflects its high – white node or low – black node centrality in the social network is presented in the paper. The importance of the vertices is assessed by utilizing two measures: degree prestige and degree centrality. The distribution of motifs in these two cases is compared to mine the interconnection patterns between nodes. The analysis is performed on the social network derived from email communication
Prevention of childhood poisoning in the home: overview of systematic reviews and a systematic review of primary studies
Unintentional poisoning is a significant child public health problem. This systematic overview of reviews, supplemented with a systematic review of recently published primary studies synthesizes evidence on non-legislative interventions to reduce childhood poisonings in the home with particular reference to interventions that could be implemented by Children's Centres in England or community health or social care services in other high income countries. Thirteen systematic reviews, two meta-analyses and 47 primary studies were identified. The interventions most commonly comprised education, provision of cupboard/drawer locks, and poison control centre (PCC) number stickers. Meta-analyses and primary studies provided evidence that interventions improved poison prevention practices. Twenty eight per cent of studies reporting safe medicine storage (OR from meta-analysis 1.57, 95% CI 1.22–2.02), 23% reporting safe storage of other products (OR from meta-analysis 1.63, 95% CI 1.22–2.17) and 46% reporting availability of PCC numbers (OR from meta-analysis 3.67, 95% CI 1.84–7.33) demonstrated significant effects favouring the intervention group. There was a lack of evidence that interventions reduced poisoning rates. Parents should be provided with poison prevention education, cupboard/drawer locks and emergency contact numbers to use in the event of a poisoning. Further research is required to determine whether improving poison prevention practices reduces poisoning rates
Quantum Gambling Using Three Nonorthogonal States
We provide a quantum gambling protocol using three (symmetric) nonorthogonal
states. The bias of the proposed protocol is less than that of previous ones,
making it more practical. We show that the proposed scheme is secure against
non-entanglement attacks. The security of the proposed scheme against
entanglement attacks is shown heuristically.Comment: no essential correction, 4 pages, RevTe
Behavioural changes in drivers experiencing highly-automated vehicle control in varying traffic conditions
Previous research has indicated that high levels of vehicle automation can result in reduced driver situation awareness, but has also highlighted potential benefits of such future vehicle designs through enhanced safety and reduced driver workload. Well-designed automation allows drivers’ visual attention to be focused away from the roadway and toward secondary, in-vehicle tasks. Such tasks may be pleasant distractions from the monotony of system monitoring. This study was undertaken to investigate the impact of voluntary secondary task uptake on the system supervisory responsibilities of drivers experiencing highly-automated vehicle control. Independent factors of Automation Level (manual control, highly-automated) and Traffic Density (light, heavy) were manipulated in a repeated-measures experimental design. 49 drivers participated using a high-fidelity driving simulator that allowed drivers to see, hear and, crucially, feel the impact of their automated vehicle handling. Drivers experiencing automation tended to refrain from behaviours that required them to temporarily retake manual control, such as overtaking, resulting in an increased journey time. Automation improved safety margins in car following, however this was restricted to conditions of light surrounding traffic. Participants did indeed become more heavily involved with the in-vehicle entertainment tasks than they were in manual driving, affording less visual attention to the road ahead. This might suggest that drivers are happy to forgo their supervisory responsibilities in preference of a more entertaining highly-automated drive. However, they did demonstrate additional attention to the roadway in heavy traffic, implying that these responsibilities are taken more seriously as the supervisory demand of vehicle automation increases. These results may dampen some concerns over driver underload with vehicle automation, assuming vehicle manufacturers embrace the need for positive system feedback and drivers also fully appreciate their supervisory obligations in such future vehicle designs
Spin density wave dislocation in chromium probed by coherent x-ray diffraction
We report on the study of a magnetic dislocation in pure chromium. Coherent
x-ray diffraction profiles obtained on the incommensurate Spin Density Wave
(SDW) reflection are consistent with the presence of a dislocation of the
magnetic order, embedded at a few micrometers from the surface of the sample.
Beyond the specific case of magnetic dislocations in chromium, this work may
open up a new method for the study of magnetic defects embedded in the bulk.Comment: 8 pages, 7 figure
Quantum Gambling Using Two Nonorthogonal States
We give a (remote) quantum gambling scheme that makes use of the fact that
quantum nonorthogonal states cannot be distinguished with certainty. In the
proposed scheme, two participants Alice and Bob can be regarded as playing a
game of making guesses on identities of quantum states that are in one of two
given nonorthogonal states: if Bob makes a correct (an incorrect) guess on the
identity of a quantum state that Alice has sent, he wins (loses). It is shown
that the proposed scheme is secure against the nonentanglement attack. It can
also be shown heuristically that the scheme is secure in the case of the
entanglement attack.Comment: no essential correction, 4 pages, RevTe
Breakup of F on Pb near the Coulomb barrier
Angular distributions of oxygen produced in the breakup of F incident
on a Pb target have been measured around the grazing angle at beam
energies of 98 and 120 MeV. The data are dominated by the proton stripping
mechanism and are well reproduced by dynamical calculations. The measured
breakup cross section is approximately a factor of 3 less than that of fusion
at 98 MeV. The influence of breakup on fusion is discussed.Comment: 7 pages, 8 figure
Masses of ground and excited-state hadrons
We present the first Dyson-Schwinger equation calculation of the light hadron
spectrum that simultaneously correlates the masses of meson and baryon ground-
and excited-states within a single framework. At the core of our analysis is a
symmetry-preserving treatment of a vector-vector contact interaction. In
comparison with relevant quantities the
root-mean-square-relative-error/degree-of freedom is 13%. Notable amongst our
results is agreement between the computed baryon masses and the bare masses
employed in modern dynamical coupled-channels models of pion-nucleon reactions.
Our analysis provides insight into numerous aspects of baryon structure; e.g.,
relationships between the nucleon and Delta masses and those of the
dressed-quark and diquark correlations they contain.Comment: 25 pages, 7 figures, 4 table
- …
