24 research outputs found

    OSETI with STACEE: A Search for Nanosecond Optical Transients from Nearby Stars

    Full text link
    We have used the STACEE high-energy gamma-ray detector to look for fast blue-green laser pulses from the vicinity of 187 stars. The STACEE detector offers unprecedented light-collecting capability for the detection of nanosecond pulses from such lasers. We estimate STACEE's sensitivity to be approximately 10 photons per square meter at a wavelength of 420 nm. The stars have been chosen because their characteristics are such that they may harbor habitable planets and they are relatively close to Earth. Each star was observed for 10 minutes and we found no evidence for laser pulses in any of the data sets.Comment: 38 pages, 12 figures. Accepted for publication in Astrobiolog

    Test of a theoretical equation of state for elemental solids and liquids

    Full text link
    We propose a means for constructing highly accurate equations of state (EOS) for elemental solids and liquids essentially from first principles, based upon a particular decomposition of the underlying condensed matter Hamiltonian for the nuclei and electrons. We also point out that at low pressures the neglect of anharmonic and electron-phonon terms, both contained in this formalism, results in errors of less than 5% in the thermal parts of the thermodynamic functions. Then we explicitly display the forms of the remaining terms in the EOS, commenting on the use of experiment and electronic structure theory to evaluate them. We also construct an EOS for Aluminum and compare the resulting Hugoniot with data up to 5 Mbar, both to illustrate our method and to see whether the approximation of neglecting anharmonicity et al. remains viable to such high pressures. We find a level of agreement with experiment that is consistent with the low-pressure results.Comment: Minor revisions for consistency with published versio

    The STACEE-32 Ground Based Gamma-ray Detector

    Full text link
    We describe the design and performance of the Solar Tower Atmospheric Cherenkov Effect Experiment detector in its initial configuration (STACEE-32). STACEE is a new ground-based gamma ray detector using the atmospheric Cherenkov technique. In STACEE, the heliostats of a solar energy research array are used to collect and focus the Cherenkov photons produced in gamma-ray induced air showers. The large Cherenkov photon collection area of STACEE results in a gamma-ray energy threshold below that of previous detectors.Comment: 45 pages, 25 figures, Accepted for publication in Nuclear Instruments and Methods

    Very high energy observations of the BL Lac objects 3C 66A and OJ 287

    Full text link
    Using the Solar Tower Atmospheric Cherenkov Effect Experiment (STACEE), we have observed the BL Lac objects 3C 66A and OJ 287. These are members of the class of low-frequency-peaked BL Lac objects (LBLs) and are two of the three LBLs predicted by Costamante and Ghisellini to be potential sources of very high energy (>100 GeV) gamma-ray emission. The third candidate, BL Lacertae, has recently been detected by the MAGIC collaboration. Our observations have not produced detections; we calculate a 99% CL upper limit of flux from 3C 66A of 0.15 Crab flux units and from OJ 287 our limit is 0.52 Crab. These limits assume a Crab-like energy spectrum with an effective energy threshold of 185 GeV.Comment: 24 pages, 15 figures, Accepted for publication in Astroparticle Physic

    Evaluation of hydrochars from lignin hydrous pyrolysis to produce biocokes after carbonization

    Get PDF
    Hydrochars were obtained after hydrous pyrolysis of a pine Kraft lignin using different reaction conditions (temperature, water content and residence time) and the residues were characterized through a wide range of analytical techniques including high-temperature rheometry, solid-state 13C nuclear magnetic resonance (NMR), thermal gravimetric analysis (TGA), diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and field emission scanning electron microscopy (FE-SEM). The results indicated that an increase in reaction temperature, an increase in residence time or a decrease in water content reduces the amount of fluid material in the residue. The hydrous pyrolysis conditions studied were not able to increase the maturation of lignin, which would result in an increase in the resolidification temperature, but reduced the amount of mineral matter in the hydrochar produced. On the other hand, the hydrochars obtained from pristine lignin, torrefied lignin (300 °C, 1 h) and their 50:50 wt.%/wt.% blend at temperatures of 350 °C after 6 h using 30 ml of water had lower ash contents (45%) is excessively high compared to that of the good coking coal (10%) and the micro-strength of the biocokes (R139%) and high microporous surface areas ( > 400 m2/g) of the biocokes and high alkalinity index of the lignins (>27%) compared to those of the coke (27% and 145 m2/g) and coal (0.6%), respectively. Furthermore, the biocoke derived from the hydrous pyrolysed torrefied lignin did not agglomerate, which could not be explained by changes in the chemical properties of the material and requires further investigation

    Red swamp crayfish: biology, ecology and invasion - an overview

    Full text link
    corecore