13 research outputs found
Perturbation theory of the space-time non-commutative real scalar field theories
The perturbative framework of the space-time non-commutative real scalar
field theory is formulated, based on the unitary S-matrix. Unitarity of the
S-matrix is explicitly checked order by order using the Heisenberg picture of
Lagrangian formalism of the second quantized operators, with the emphasis of
the so-called minimal realization of the time-ordering step function and of the
importance of the -time ordering. The Feynman rule is established and is
presented using scalar field theory. It is shown that the divergence
structure of space-time non-commutative theory is the same as the one of
space-space non-commutative theory, while there is no UV-IR mixing problem in
this space-time non-commutative theory.Comment: Latex 26 pages, notations modified, add reference
Expression analysis of the TAB2 protein in adult mouse tissues
Background: The Interleukin-1 (IL-1) signaling component TAK1 binding protein 2 (TAB2) plays a role in activating the NFκB and JNK signaling pathways. Additionally, TAB2 functions in the nucleus as a repressor of NFκB-mediated gene regulation. Objective: To obtain insight into the function of TAB2 in the adult mouse, we analyzed the in vivo TAB2 expression pattern. Materials and methods: Cell lines and adult mouse tissues were analyzed for TAB2 protein expression and localization. Results: Immunohistochemical staining for TAB2 protein revealed expression in the vascular endothelium of most tissues, hematopoietic cells and brain cells. While TAB2 is localized in both the nucleus and the cytoplasm in cell lines, cytoplasmic localization predominates in hematopoietic tissues in vivo. Conclusions: The TAB2 expression pattern shows striking similarities with previously reported IL-1 receptor expression and NFκB activation patterns, suggesting that TAB2 in vivo is playing a role in these signaling pathways
Distribution of Frequencies of Spontaneous Oscillations in Hair Cells of the Bullfrog Sacculus
Under in vitro conditions, free-standing hair bundles of the bullfrog (Rana catesbeiana) sacculus have exhibited spontaneous oscillations. We used a high-speed complementary metal oxide semiconductor camera to track the active movements of multiple hair cells in a single field of view. Our techniques enabled us to probe for correlations between pairs of cells, and to acquire records on over 100 actively oscillating bundles per epithelium. We measured the statistical distribution of oscillation periods of cells from different areas within the sacculus, and on different epithelia. Spontaneous oscillations exhibited a peak period of 33 ms (+29 ms, −14 ms) and uniform spatial distribution across the sacculus